Core–Shell Heterojunction of Silicon Nanowire Arrays and Carbon Quantum Dots for Photovoltaic Devices and Self-Driven Photodetectors
Silicon nanostructure-based solar cells have lately intrigued intensive interest because of their promising potential in next-generation solar energy conversion devices. Herein, we report a silicon nanowire (SiNW) array/carbon quantum dot (CQD) core–shell heterojunction photovoltaic device by direct...
Saved in:
Published in | ACS nano Vol. 8; no. 4; pp. 4015 - 4022 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
22.04.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Silicon nanostructure-based solar cells have lately intrigued intensive interest because of their promising potential in next-generation solar energy conversion devices. Herein, we report a silicon nanowire (SiNW) array/carbon quantum dot (CQD) core–shell heterojunction photovoltaic device by directly coating Ag-assisted chemical-etched SiNW arrays with CQDs. The heterojunction with a barrier height of 0.75 eV exhibited excellent rectifying behavior with a rectification ratio of 103 at ±0.8 V in the dark and power conversion efficiency (PCE) as high as 9.10% under AM 1.5G irradiation. It is believed that such a high PCE comes from the improved optical absorption as well as the optimized carrier transfer and collection capability. Furthermore, the heterojunction could function as a high-performance self-driven visible light photodetector operating in a wide switching wavelength with good stability, high sensitivity, and fast response speed. It is expected that the present SiNW array/CQD core–shell heterojunction device could find potential applications in future high-performance optoelectronic devices. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1936-0851 1936-086X 1936-086X |
DOI: | 10.1021/nn501001j |