α‑Aminoisobutyric Acid-Containing Amphipathic Helical Peptide-Cyclic RGD Conjugation as a Potential Drug Delivery System for MicroRNA Replacement Therapy in Vitro
Replacement therapy with tumor suppressive microRNA (TS-miRNA) might be the next-generation oligonucleotide therapy; however, a novel drug delivery system (DDS) is required. Recently, we developed the cell-penetrating peptide, model amphipathic peptide with α-aminoisobutyric acid (MAP(Aib)), as a c...
Saved in:
Published in | Molecular pharmaceutics Vol. 16; no. 11; pp. 4542 - 4550 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
04.11.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Replacement therapy with tumor suppressive microRNA (TS-miRNA) might be the next-generation oligonucleotide therapy; however, a novel drug delivery system (DDS) is required. Recently, we developed the cell-penetrating peptide, model amphipathic peptide with α-aminoisobutyric acid (MAP(Aib)), as a carrier for oligonucleotide delivery to cells. In this study, we examined whether a modified MAP(Aib) analogue, MAP(Aib)-cRGD, could be a DDS for TS-miRNA replacement therapy. MIR145-5p, a representative TS-miRNA especially in colorectal cancer, was selected. The MAP(Aib)-cRGD dose was adjusted for MIR145-5p delivery to cells using peripheral blood mononuclear cells and degradation analysis. AlexaFluor488-labeled MIR145-5p incorporation into cells and negative regulation of MIR145-5p-targeting genes demonstrated MAP(Aib)-cRGD’s functionality as a miRNA DDS. Treating MIR145-5p with MAP(Aib)-cRGD also revealed various anticancer effects, such as cell viability, invasion inhibition, and apoptosis induction in WiDr cells. Altogether, these findings suggest that MAP(Aib)-cRGD could be a DDS for TS-miRNA replacement therapy, but in vivo investigations are required. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1543-8384 1543-8392 |
DOI: | 10.1021/acs.molpharmaceut.9b00680 |