Overview of the Development of Glutaminase Inhibitors: Achievements and Future Directions
It has been demonstrated that glutamine metabolism has become the main energy and building blocks supply for the growth and viability of a potentially large subset of malignant tumors. The glutamine metabolism often depends upon mitochondrial glutaminase (GLS) activity, which converts glutamine to g...
Saved in:
Published in | Journal of medicinal chemistry Vol. 62; no. 3; pp. 1096 - 1115 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
14.02.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | It has been demonstrated that glutamine metabolism has become the main energy and building blocks supply for the growth and viability of a potentially large subset of malignant tumors. The glutamine metabolism often depends upon mitochondrial glutaminase (GLS) activity, which converts glutamine to glutamate and serves as a significant role for bioenergetic processes. Thus, recently, the GLS has become a key target for small molecule therapeutic intervention. Numerous medicinal chemistry studies are currently aimed at the design of novel and potent inhibitors for GLS, however, to date, only one compound (named CB-839) have entered clinical trials for the treatment of advanced solid tumors and hematological malignancies. The perspective summarizes the progress in the discovery and development of GLS inhibitors, including the potential binding site, biochemical techniques for inhibitor identification, and approaches for identifying small-molecule inhibitors, as well as future therapeutic perspectives in glutamine metabolism are also put forward in order to provide reference and rational for the drug discovery of novel and potent glutamine metabolism modulators. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0022-2623 1520-4804 |
DOI: | 10.1021/acs.jmedchem.8b00961 |