Hyaluronic Acid-Functionalized Hollow Mesoporous Silica Nanoparticles as pH-Sensitive Nanocarriers for Cancer Chemo-Photodynamic Therapy

Hollow mesoporous silica nanoparticles (HMSNs) served as nanocarriers for transporting doxorubicin hydrochloride (DOX) and indocyanine green (ICG) and were incorporated into a pH-sensitive targeted drug delivery system (DDS). Boronate ester bonds were employed to link HMSNs and dopamine-modified hya...

Full description

Saved in:
Bibliographic Details
Published inLangmuir Vol. 37; no. 8; pp. 2619 - 2628
Main Authors Zhou, Yimin, Chang, Cong, Liu, Zuhao, Zhao, Qiuling, Xu, Qingni, Li, Chaohua, Chen, Yuqi, Zhang, Yueli, Lu, Bo
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 02.03.2021
Online AccessGet full text

Cover

Loading…
More Information
Summary:Hollow mesoporous silica nanoparticles (HMSNs) served as nanocarriers for transporting doxorubicin hydrochloride (DOX) and indocyanine green (ICG) and were incorporated into a pH-sensitive targeted drug delivery system (DDS). Boronate ester bonds were employed to link HMSNs and dopamine-modified hyaluronic acid (DA-HA), which acted as both the “gatekeeper” and targeting agents (HMSNs-B-HA). Well-dispersed HMSNs-B-HA with a diameter of about 170 nm was successfully constructed. The conclusion was drawn from the in vitro drug release experiment that ICG and DOX (ID) co-loaded nanoparticles (ID@HMSNs-B-HA) with high drug loading efficiency could sustain drug release under acidic conditions. More importantly, in vitro cell experiments perfectly showed that ID@HMSNs-B-HA could well inhibit murine mammary carcinoma (4T1) cells via chemotherapy combined with photodynamic therapy and accurately target 4 T1 cells. In summary, all test results sufficiently demonstrated that the prepared ID@HMSNs-B-HA was a promising nano-DDS for cancer photodynamic combined with chemotherapy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0743-7463
1520-5827
DOI:10.1021/acs.langmuir.0c03250