Synthesis and biological activity of various 3'-azido and 3'-amino analogs of 5-substituted pyrimidine deoxyribonucleosides
Various new 5-substituted 3'-azido- and 3'-amino derivatives of 2'-deoxyuridine and 2'-deoxycytidine have been synthesized and biologically evaluated. Among these compounds, 3'-amino-2',3'-dideoxy-5-fluorouridine (3), 3'-amino-2',3'-dideoxycytidine (...
Saved in:
Published in | Journal of medicinal chemistry Vol. 26; no. 12; pp. 1691 - 1696 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
01.12.1983
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Various new 5-substituted 3'-azido- and 3'-amino derivatives of 2'-deoxyuridine and 2'-deoxycytidine have been synthesized and biologically evaluated. Among these compounds, 3'-amino-2',3'-dideoxy-5-fluorouridine (3), 3'-amino-2',3'-dideoxycytidine (7a), and 3'-amino-2',3'-dideoxy-5-fluorocytidine (7c) were found to be the most active against murine L1210 and sarcoma 180 neoplastic cells in vitro, with an ED50 of 15 and 1 microM, 0.7 and 4 microM, and 10 and 1 microM, respectively. The 3'-azido derivatives, 2 and 6c, were less active in comparison with their 3'-amino counterparts. In addition, the 5-fluoro-3'-amino nucleosides, 3 and 7c, were tested against L1210 leukemia bearing CDF1 mice. Our preliminary findings indicate that compound 7c (6 X 200 mg/kg) was as active as the positive control, 5-fluorouracil (6 X 20 mg/kg), yielding a T/C X 100 of 146 and 129, respectively. However, 3 was found to be inactive in this experiment. |
---|---|
Bibliography: | istex:D4EB174F78F89291157365778540A974A7D6297E ark:/67375/TPS-2GPVPZR0-J ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0022-2623 1520-4804 |
DOI: | 10.1021/jm00366a006 |