Quasi-Periodic Nanoripples in Graphene Grown by Chemical Vapor Deposition and Its Impact on Charge Transport

The technical breakthrough in synthesizing graphene by chemical vapor deposition methods (CVD) has opened up enormous opportunities for large-scale device applications. To improve the electrical properties of CVD graphene grown on copper (Cu-CVD graphene), recent efforts have focused on increasing t...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 6; no. 2; pp. 1158 - 1164
Main Authors Ni, Guang-Xin, Zheng, Yi, Bae, Sukang, Kim, Hye Ri, Pachoud, Alexandre, Kim, Young Soo, Tan, Chang-Ling, Im, Danho, Ahn, Jong-Hyun, Hong, Byung Hee, Özyilmaz, Barbaros
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 28.02.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The technical breakthrough in synthesizing graphene by chemical vapor deposition methods (CVD) has opened up enormous opportunities for large-scale device applications. To improve the electrical properties of CVD graphene grown on copper (Cu-CVD graphene), recent efforts have focused on increasing the grain size of such polycrystalline graphene films to 100 μm and larger. While an increase in grain size and, hence, a decrease of grain boundary density is expected to greatly enhance the device performance, here we show that the charge mobility and sheet resistance of Cu-CVD graphene is already limited within a single grain. We find that the current high-temperature growth and wet transfer methods of CVD graphene result in quasi-periodic nanoripple arrays (NRAs). Electron-flexural phonon scattering in such partially suspended graphene devices introduces anisotropic charge transport and sets limits to both the highest possible charge mobility and lowest possible sheet resistance values. Our findings provide guidance for further improving the CVD graphene growth and transfer process.
AbstractList The technical breakthrough in synthesizing graphene by chemical vapor deposition methods (CVD) has opened up enormous opportunities for large-scale device applications. To improve the electrical properties of CVD graphene grown on copper (Cu-CVD graphene), recent efforts have focused on increasing the grain size of such polycrystalline graphene films to 100 μm and larger. While an increase in grain size and, hence, a decrease of grain boundary density is expected to greatly enhance the device performance, here we show that the charge mobility and sheet resistance of Cu-CVD graphene is already limited within a single grain. We find that the current high-temperature growth and wet transfer methods of CVD graphene result in quasi-periodic nanoripple arrays (NRAs). Electron-flexural phonon scattering in such partially suspended graphene devices introduces anisotropic charge transport and sets limits to both the highest possible charge mobility and lowest possible sheet resistance values. Our findings provide guidance for further improving the CVD graphene growth and transfer process.
The technical breakthrough in synthesizing graphene by chemical vapor deposition methods (CVD) has opened up enormous opportunities for large-scale device applications. To improve the electrical properties of CVD graphene grown on copper (Cu-CVD graphene), recent efforts have focused on increasing the grain size of such polycrystalline graphene films to 100 mu m and larger. While an increase in grain size and, hence, a decrease of grain boundary density is expected to greatly enhance the device performance, here we show that the charge mobility and sheet resistance of Cu-CVD graphene is already limited within a single grain. We find that the current high-temperature growth and wet transfer methods of CVD graphene result in quasi-periodic nanoripple arrays (NRAs). Electron-flexural phonon scattering in such partially suspended graphene devices introduces anisotropic charge transport and sets limits to both the highest possible charge mobility and lowest possible sheet resistance values. Our findings provide guidance for further improving the CVD graphene growth and transfer process.
Author Ni, Guang-Xin
Bae, Sukang
Pachoud, Alexandre
Kim, Hye Ri
Hong, Byung Hee
Kim, Young Soo
Zheng, Yi
Tan, Chang-Ling
Ahn, Jong-Hyun
Özyilmaz, Barbaros
Im, Danho
AuthorAffiliation Department of Chemistry
National University of Singapore
School of Advanced Materials Science and Engineering
SKKU Advanced Institute of Nanotechnology (SAINT) and Center for Human Interface Nano Technology (HINT)
Sungkyunkwan University
Seoul National University
Department of Physics
AuthorAffiliation_xml – name: School of Advanced Materials Science and Engineering
– name:
– name: Sungkyunkwan University
– name: Department of Chemistry
– name: SKKU Advanced Institute of Nanotechnology (SAINT) and Center for Human Interface Nano Technology (HINT)
– name: Department of Physics
– name: National University of Singapore
– name: Seoul National University
Author_xml – sequence: 1
  givenname: Guang-Xin
  surname: Ni
  fullname: Ni, Guang-Xin
– sequence: 2
  givenname: Yi
  surname: Zheng
  fullname: Zheng, Yi
– sequence: 3
  givenname: Sukang
  surname: Bae
  fullname: Bae, Sukang
– sequence: 4
  givenname: Hye Ri
  surname: Kim
  fullname: Kim, Hye Ri
– sequence: 5
  givenname: Alexandre
  surname: Pachoud
  fullname: Pachoud, Alexandre
– sequence: 6
  givenname: Young Soo
  surname: Kim
  fullname: Kim, Young Soo
– sequence: 7
  givenname: Chang-Ling
  surname: Tan
  fullname: Tan, Chang-Ling
– sequence: 8
  givenname: Danho
  surname: Im
  fullname: Im, Danho
– sequence: 9
  givenname: Jong-Hyun
  surname: Ahn
  fullname: Ahn, Jong-Hyun
– sequence: 10
  givenname: Byung Hee
  surname: Hong
  fullname: Hong, Byung Hee
  email: barbaros@nus.edu.sg, byunghee@snu.ac.kr
– sequence: 11
  givenname: Barbaros
  surname: Özyilmaz
  fullname: Özyilmaz, Barbaros
  email: barbaros@nus.edu.sg, byunghee@snu.ac.kr
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22251076$$D View this record in MEDLINE/PubMed
BookMark eNp90ctKxDAUBuAgipfRhS8g2Yi6qCZpk7RLGW8D4gVGcVdO04wTaZOatKhvb4bRWYmrHMLHz-E_O2jdOqsR2qfklBJGz6xlJJWSf66hbVqkIiG5eFlfzZxuoZ0Q3gjhMpdiE20xxjglUmyj5nGAYJIH7Y2rjcJ3YJ03XdfogI3F1x66ubY6Du7D4uoLj-e6NQoa_Ayd8_hCdy6Y3jiLwdZ40gc8aTtQPY4_4zn4V42nHmyIuN9FGzNogt77eUfo6epyOr5Jbu-vJ-Pz2wQymvYJ5wXjDHguVQ65KFIOmvO6yIpZ3JoCrUDpvGI8k3ldqUwoADKjTNZRV6RIR-homdt59z7o0JetCUo3DVjthlAWLCtEKsRCHv8rqRQstpbGfkfoZEmVdyF4PSs7b1rwXyUl5eIM5eoM0R78xA5Vq-uV_O09gsMlABXKNzd4G_v4I-gbKBGQJA
CitedBy_id crossref_primary_10_1021_acsanm_4c01088
crossref_primary_10_1002_ppsc_201800105
crossref_primary_10_1016_j_seppur_2019_115972
crossref_primary_10_1016_j_jmps_2022_104831
crossref_primary_10_1021_acs_nanolett_0c02785
crossref_primary_10_1002_cphc_201402633
crossref_primary_10_3390_sym12040533
crossref_primary_10_1021_nn503476j
crossref_primary_10_1021_ar300159f
crossref_primary_10_1002_smll_201303929
crossref_primary_10_2139_ssrn_4184433
crossref_primary_10_1002_smll_201800725
crossref_primary_10_1021_nn4051248
crossref_primary_10_1016_j_carbon_2013_07_090
crossref_primary_10_1002_admi_202002025
crossref_primary_10_1002_smll_201402024
crossref_primary_10_1007_s11665_023_07809_5
crossref_primary_10_1016_j_carbon_2018_11_076
crossref_primary_10_1021_acs_nanolett_7b03167
crossref_primary_10_1016_j_physe_2019_113846
crossref_primary_10_1039_C5CP07142A
crossref_primary_10_1021_acsami_8b14698
crossref_primary_10_1088_2053_1583_aa62e8
crossref_primary_10_1039_c3ra23372c
crossref_primary_10_1063_1_4825103
crossref_primary_10_1088_2515_7639_ac1247
crossref_primary_10_1103_PhysRevLett_114_065501
crossref_primary_10_1016_j_mattod_2015_10_002
crossref_primary_10_1016_j_ssc_2014_07_012
crossref_primary_10_1021_acsami_9b23261
crossref_primary_10_1021_jz3007029
crossref_primary_10_1063_1_4882241
crossref_primary_10_1007_s10008_016_3423_0
crossref_primary_10_1002_admi_202001224
crossref_primary_10_1021_acsanm_9b01232
crossref_primary_10_1039_D1CP05981E
crossref_primary_10_1002_adfm_201301732
crossref_primary_10_1088_1361_648X_ab3e8f
crossref_primary_10_1063_1_4719205
crossref_primary_10_1126_science_1218948
crossref_primary_10_1021_acs_nanolett_6b01578
crossref_primary_10_1088_0268_1242_31_11_115001
crossref_primary_10_15407_ufm_23_02_147
crossref_primary_10_1021_nn3010137
crossref_primary_10_1016_j_tsf_2017_08_009
crossref_primary_10_1103_PhysRevResearch_2_013008
crossref_primary_10_1063_1_4879236
crossref_primary_10_1021_nn406333f
crossref_primary_10_1038_srep24143
crossref_primary_10_1002_adfm_201700121
crossref_primary_10_1002_adma_201500599
crossref_primary_10_1080_15421406_2017_1338471
crossref_primary_10_1016_j_physleta_2021_127510
crossref_primary_10_1002_aelm_201901167
crossref_primary_10_1002_smll_201301892
crossref_primary_10_1021_nn405596j
crossref_primary_10_1038_nphys2389
crossref_primary_10_1021_nl303934v
crossref_primary_10_1016_j_carbon_2022_10_037
crossref_primary_10_1002_adma_201304156
crossref_primary_10_1002_aisy_202200183
crossref_primary_10_1088_1402_4896_acb094
crossref_primary_10_1021_nl3002974
crossref_primary_10_1063_5_0134654
crossref_primary_10_1016_j_carbon_2015_09_046
crossref_primary_10_1021_nl302870x
crossref_primary_10_35848_1882_0786_aca750
crossref_primary_10_1016_j_carbon_2016_02_066
crossref_primary_10_1021_jp404350r
crossref_primary_10_1021_acsnano_5b06842
crossref_primary_10_1039_c3nr06885d
crossref_primary_10_1021_acs_chemmater_8b03128
crossref_primary_10_1016_j_carbon_2013_07_050
crossref_primary_10_1016_j_apsusc_2014_06_197
crossref_primary_10_1088_1361_6528_aa6146
crossref_primary_10_1039_D0NR01406K
crossref_primary_10_1088_1361_6463_acaf38
crossref_primary_10_1109_ACCESS_2019_2958136
crossref_primary_10_1063_1_4834538
crossref_primary_10_1038_srep09390
crossref_primary_10_1002_adfm_201203652
crossref_primary_10_1137_16M1076198
crossref_primary_10_1021_acs_nanolett_5b00440
crossref_primary_10_1088_1742_6596_1416_1_012035
crossref_primary_10_1016_j_apsusc_2013_11_012
crossref_primary_10_1063_5_0007887
crossref_primary_10_1063_5_0056212
crossref_primary_10_1002_adma_201500785
crossref_primary_10_1016_j_pmatsci_2020_100665
crossref_primary_10_7498_aps_66_217702
crossref_primary_10_1021_acs_jpcc_7b01376
crossref_primary_10_3390_ma17071648
crossref_primary_10_1021_nn405754d
crossref_primary_10_1063_1_4941987
crossref_primary_10_1016_j_cej_2024_150195
crossref_primary_10_1088_1402_4896_ad418a
crossref_primary_10_7566_JPSJ_82_113706
crossref_primary_10_1080_17458080_2016_1159741
crossref_primary_10_1115_1_4036416
crossref_primary_10_1002_inf2_12156
crossref_primary_10_1039_c3nr02934d
crossref_primary_10_1016_j_carbon_2015_08_110
crossref_primary_10_1021_acs_nanolett_2c03911
crossref_primary_10_1039_c3tc31717j
crossref_primary_10_1002_smtd_202100771
crossref_primary_10_3390_sym15081593
crossref_primary_10_1103_PhysRevB_89_165401
crossref_primary_10_1103_PhysRevLett_120_246101
crossref_primary_10_1021_acs_jpcc_9b10622
crossref_primary_10_1103_PhysRevB_109_205402
crossref_primary_10_1021_nl5016552
crossref_primary_10_1063_1_4751982
crossref_primary_10_1039_C6NR00706F
crossref_primary_10_1016_j_physleta_2024_129670
crossref_primary_10_1002_admt_202200596
crossref_primary_10_1021_acs_nanolett_6b03168
crossref_primary_10_1103_PhysRevB_90_115422
crossref_primary_10_1016_j_physe_2023_115865
crossref_primary_10_1063_5_0036580
crossref_primary_10_1007_s12274_013_0296_8
crossref_primary_10_1002_sstr_202300551
crossref_primary_10_1039_C8NH00112J
crossref_primary_10_3390_mi13010027
crossref_primary_10_1016_j_aop_2018_09_004
Cites_doi 10.1103/PhysRevB.83.165405
10.1021/nl102788f
10.1038/nature04233
10.1038/nphoton.2010.186
10.1038/nnano.2010.132
10.1021/nl1029978
10.1021/ja109793s
10.1021/nl200714q
10.1103/PhysRevLett.105.266601
10.1209/0295-5075/93/17002
10.1038/nature07719
10.1103/PhysRevB.82.195403
10.1021/nl200758b
10.1103/PhysRevLett.105.166602
10.1103/PhysRevLett.105.126601
10.1126/science.1171245
10.1038/nnano.2010.172
10.1038/nnano.2008.58
10.1126/science.1167130
10.1021/nl801827v
10.1021/nl1036403
10.1098/rsta.2007.2157
10.1063/1.3119215
10.1021/nn200573v
10.1103/PhysRevLett.100.016602
10.1126/science.1158877
10.1038/nmat3010
10.1038/nnano.2010.53
10.1021/nl901572a
10.1103/PhysRevB.83.195436
10.1021/nl101629g
10.1103/PhysRevB.83.235416
10.1063/1.3599708
10.1103/PhysRevLett.103.046801
10.1103/RevModPhys.81.109
ContentType Journal Article
Copyright Copyright © 2012 American Chemical Society
Copyright_xml – notice: Copyright © 2012 American Chemical Society
DBID NPM
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1021/nn203775x
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 1164
ExternalDocumentID 10_1021_nn203775x
22251076
a778461763
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
23M
4.4
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
LG6
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
5VS
6J9
AAHBH
ABJNI
ABQRX
ACBEA
ACGFO
ADHLV
AHGAQ
BAANH
CUPRZ
GGK
NPM
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-a413t-559252a587c8a86935ae55d949f5101a1bace8b25478dbc46caa0f127da86b093
IEDL.DBID ACS
ISSN 1936-0851
IngestDate Fri Aug 16 08:15:14 EDT 2024
Sat Aug 17 03:32:36 EDT 2024
Fri Aug 23 00:24:34 EDT 2024
Sat Sep 28 07:59:41 EDT 2024
Thu Aug 27 13:42:23 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords flexural phonon scattering
sheet resistance
quasi-periodic nanoripple arrays
transparent electrodes
anisotropic
charge transport
CVD graphene
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a413t-559252a587c8a86935ae55d949f5101a1bace8b25478dbc46caa0f127da86b093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 22251076
PQID 1762057320
PQPubID 23500
PageCount 7
ParticipantIDs proquest_miscellaneous_924963669
proquest_miscellaneous_1762057320
crossref_primary_10_1021_nn203775x
pubmed_primary_22251076
acs_journals_10_1021_nn203775x
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2012-02-28
PublicationDateYYYYMMDD 2012-02-28
PublicationDate_xml – month: 02
  year: 2012
  text: 2012-02-28
  day: 28
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2012
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Morozov S. V. (ref24/cit24) 2008; 100
Bonaccorso F. (ref4/cit4) 2010; 4
Bae S. (ref7/cit7) 2010; 5
Chen J. H. (ref27/cit27) 2008; 3
Lee S. (ref8/cit8) 2010; 10
Kusminskiy V. S. (ref28/cit28) 2011; 83
Novoselov K. S. (ref2/cit2) 2005; 438
Dean C. R. (ref11/cit11) 2010; 5
Castro E. V. (ref30/cit30) 2010; 105
Rasool H. I. (ref17/cit17) 2011; 11
Zheng Y. (ref10/cit10) 2011; 93
Avsar A. (ref35/cit35) 2011; 11
Zheng Y. (ref5/cit5) 2009; 94
Castro Neto A. H. (ref3/cit3) 2009; 81
Lahiri J. (ref23/cit23) 2010; 5
Reina A. (ref15/cit15) 2009; 9
Li X. (ref6/cit6) 2009; 324
Wofford J. M. (ref20/cit20) 2010; 10
Gannett W. (ref12/cit12) 2011; 98
Zheng Y. (ref9/cit9) 2010; 105
Pereira V. M. (ref13/cit13) 2009; 103
Li X. S. (ref19/cit19) 2010; 10
Kim K. S. (ref16/cit16) 2009; 457
Mariani E. (ref31/cit31) 2010; 82
Li X. S. (ref18/cit18) 2011; 133
Zhang Y. F. (ref21/cit21) 2011; 5
Katsnelson M. I. (ref29/cit29) 2008; 366
Yu Y. J. (ref36/cit36) 2009; 9
Yu Q. K. (ref22/cit22) 2011; 10
Ochoa H. (ref25/cit25) 2011; 83
Low T. (ref14/cit14) 2011; 83
Elias D. C. (ref34/cit34) 2009; 323
Zou K. (ref26/cit26) 2010; 105
Geim A. K. (ref1/cit1) 2009; 324
Mayorov A. S. (ref33/cit33) 2011; 11
References_xml – volume: 83
  start-page: 165405
  year: 2011
  ident: ref28/cit28
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.165405
  contributor:
    fullname: Kusminskiy V. S.
– volume: 10
  start-page: 4890
  year: 2010
  ident: ref20/cit20
  publication-title: Nano Lett.
  doi: 10.1021/nl102788f
  contributor:
    fullname: Wofford J. M.
– volume: 438
  start-page: 197
  year: 2005
  ident: ref2/cit2
  publication-title: Nature
  doi: 10.1038/nature04233
  contributor:
    fullname: Novoselov K. S.
– volume: 4
  start-page: 611
  year: 2010
  ident: ref4/cit4
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2010.186
  contributor:
    fullname: Bonaccorso F.
– volume: 5
  start-page: 574
  year: 2010
  ident: ref7/cit7
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.132
  contributor:
    fullname: Bae S.
– volume: 10
  start-page: 4702
  year: 2010
  ident: ref8/cit8
  publication-title: Nano Lett.
  doi: 10.1021/nl1029978
  contributor:
    fullname: Lee S.
– volume: 133
  start-page: 2816
  year: 2011
  ident: ref18/cit18
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja109793s
  contributor:
    fullname: Li X. S.
– volume: 11
  start-page: 2363
  year: 2011
  ident: ref35/cit35
  publication-title: Nano Lett.
  doi: 10.1021/nl200714q
  contributor:
    fullname: Avsar A.
– volume: 105
  start-page: 266601
  year: 2010
  ident: ref30/cit30
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.266601
  contributor:
    fullname: Castro E. V.
– volume: 93
  start-page: 17002
  year: 2011
  ident: ref10/cit10
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/93/17002
  contributor:
    fullname: Zheng Y.
– volume: 457
  start-page: 706
  year: 2009
  ident: ref16/cit16
  publication-title: Nature
  doi: 10.1038/nature07719
  contributor:
    fullname: Kim K. S.
– volume: 82
  start-page: 195403
  year: 2010
  ident: ref31/cit31
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.195403
  contributor:
    fullname: Mariani E.
– volume: 11
  start-page: 2396
  year: 2011
  ident: ref33/cit33
  publication-title: Nano Lett.
  doi: 10.1021/nl200758b
  contributor:
    fullname: Mayorov A. S.
– volume: 105
  start-page: 166602
  year: 2010
  ident: ref9/cit9
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.166602
  contributor:
    fullname: Zheng Y.
– volume: 105
  start-page: 126601
  year: 2010
  ident: ref26/cit26
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.126601
  contributor:
    fullname: Zou K.
– volume: 324
  start-page: 1312
  year: 2009
  ident: ref6/cit6
  publication-title: Science
  doi: 10.1126/science.1171245
  contributor:
    fullname: Li X.
– volume: 5
  start-page: 722
  year: 2010
  ident: ref11/cit11
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.172
  contributor:
    fullname: Dean C. R.
– volume: 3
  start-page: 206
  year: 2008
  ident: ref27/cit27
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2008.58
  contributor:
    fullname: Chen J. H.
– volume: 323
  start-page: 610
  year: 2009
  ident: ref34/cit34
  publication-title: Science
  doi: 10.1126/science.1167130
  contributor:
    fullname: Elias D. C.
– volume: 9
  start-page: 30
  year: 2009
  ident: ref15/cit15
  publication-title: Nano Lett.
  doi: 10.1021/nl801827v
  contributor:
    fullname: Reina A.
– volume: 11
  start-page: 251
  year: 2011
  ident: ref17/cit17
  publication-title: Nano Lett.
  doi: 10.1021/nl1036403
  contributor:
    fullname: Rasool H. I.
– volume: 366
  start-page: 195
  year: 2008
  ident: ref29/cit29
  publication-title: Philos. Trans. R. Soc., A
  doi: 10.1098/rsta.2007.2157
  contributor:
    fullname: Katsnelson M. I.
– volume: 94
  start-page: 163505
  year: 2009
  ident: ref5/cit5
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3119215
  contributor:
    fullname: Zheng Y.
– volume: 5
  start-page: 4014
  year: 2011
  ident: ref21/cit21
  publication-title: ACS Nano
  doi: 10.1021/nn200573v
  contributor:
    fullname: Zhang Y. F.
– volume: 100
  start-page: 016602
  year: 2008
  ident: ref24/cit24
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.016602
  contributor:
    fullname: Morozov S. V.
– volume: 324
  start-page: 1530
  year: 2009
  ident: ref1/cit1
  publication-title: Science
  doi: 10.1126/science.1158877
  contributor:
    fullname: Geim A. K.
– volume: 10
  start-page: 443
  year: 2011
  ident: ref22/cit22
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3010
  contributor:
    fullname: Yu Q. K.
– volume: 5
  start-page: 326
  year: 2010
  ident: ref23/cit23
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.53
  contributor:
    fullname: Lahiri J.
– volume: 9
  start-page: 3430
  year: 2009
  ident: ref36/cit36
  publication-title: Nano Lett.
  doi: 10.1021/nl901572a
  contributor:
    fullname: Yu Y. J.
– volume: 83
  start-page: 195436
  year: 2011
  ident: ref14/cit14
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.195436
  contributor:
    fullname: Low T.
– volume: 10
  start-page: 4328
  year: 2010
  ident: ref19/cit19
  publication-title: Nano Lett.
  doi: 10.1021/nl101629g
  contributor:
    fullname: Li X. S.
– volume: 83
  start-page: 235416
  year: 2011
  ident: ref25/cit25
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.235416
  contributor:
    fullname: Ochoa H.
– volume: 98
  start-page: 242105
  year: 2011
  ident: ref12/cit12
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3599708
  contributor:
    fullname: Gannett W.
– volume: 103
  start-page: 046801
  year: 2009
  ident: ref13/cit13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.046801
  contributor:
    fullname: Pereira V. M.
– volume: 81
  start-page: 109
  year: 2009
  ident: ref3/cit3
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.81.109
  contributor:
    fullname: Castro Neto A. H.
SSID ssj0057876
Score 2.483526
Snippet The technical breakthrough in synthesizing graphene by chemical vapor deposition methods (CVD) has opened up enormous opportunities for large-scale device...
SourceID proquest
crossref
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 1158
SubjectTerms Charge
Charge transport
Chemical vapor deposition
Copper
Devices
Electrical resistivity
Grain size
Graphene
Nanostructure
Title Quasi-Periodic Nanoripples in Graphene Grown by Chemical Vapor Deposition and Its Impact on Charge Transport
URI http://dx.doi.org/10.1021/nn203775x
https://www.ncbi.nlm.nih.gov/pubmed/22251076
https://search.proquest.com/docview/1762057320
https://search.proquest.com/docview/924963669
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT4NAEJ409aIH34_6aNbHlbossMDRtNbWRKPRmt7I7rKYxoY2Qg_6650tpanR6g3IAhtmd-b7MjMfABfSl75yE6SpLnWQoDjSEsKxLeElcRBKh8ba9A7f3fNOz73te_0KnC_J4DP7Mk0ZdXzfQ6C4wkzloME_zafS3ZoVx4vUMVJjxA-lfNDirSb0qOx76FmCJ6dxpb0BrbI7pygneWtMctlQnz_FGv-a8iasz3AluSoWwhZUdLoNawtqgzswfJyIbGA94OkoHiiCjnWELmM81BkZpOTGSFej58MDZOZEfpBSTIC8CETppKXLCi8i0ph084x0pz2WBK-YtP2rJnOt9F3ota-fmx1r9rMFS2Acyy1kFsxjwgt8FYiAh44ntOfFoRsmZtsKWwqlA8mM_lcslcuVEDSxmR_jaElDZw-q6SjVB0A4khDKFGeaUTf2lURUkFCeJNTVyg50DepojWi2WbJomgdndjT_bDU4Kw0VjQvRjd8GnZYmjHBLmDyHSPVogs9DB290HhmtAVkyxtBO7nAe1mC_MP_8TYYBIynmh_9N8whWET6xosH9GKr5-0SfIETJZX26RL8Ae5vfwg
link.rule.ids 315,786,790,2782,27109,27957,27958,57093,57143
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELUQHIAD-1JWg7gGHCd2kiMCSgttBWIRt8h2HFRRJYikB_h6xllKQVRwSyInGdnj8XsazzNCR9KTnnJjoKkucYCgONISwrEtweLID6RDIm1qh7s93npwr57YUyWTY2phwIgMvpQVSfwvdQH7JEkocTyPAV6cYR7wcAODzu7qqGscj5cZZGDIACNqFaHxV80KpLLvK9AEWFksL83F8pyiwrBiV8nL8TCXx-rjh2bj_yxfQgsVysSnpVssoymdrKD5Me3BVTS4HYqsb93AbRr1FYYwm0IAeR3oDPcTfGmErCEOwgXwdCzfcS0tgB8FYHZ8ruv9XlgkEW7nGW4XFZcYnpgk_rPGI-X0NfTQvLg_a1nV0QuWgFUtt4BnUEYF8z3lC58HDhOasShwg9hMYmFLobQvqVEDi6RyuRKCxDb1ImgtYXTW0XSSJnoTYQ6UhFDFqabEjTwlASPEhMcxcbWyfd1Ae9BrYTV1srDIilM7HHVbAx3W4xW-lhIcvzU6qEcyhAlish4i0ekQvgfh3qg-UtJAeEIbQ0K5w3nQQBulF4z-ZPgwUGS-9ZeZ-2i2dd_thJ1273obzQGwomXp-w6azt-GehfASy73Cq_9BBzy6C0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT9swFD5CRZq2B2A3VsbFm_aaznFiJ3mcCoWyresEnfoW-Zapokorkj7Ar-c4l4oh0HhLIsc5ss85_j4d-wvAFxWpSIcZ0tSQBkhQAuVJGfie5JmJExVQY93Z4Z8jcTYJz6d82hBFdxYGjSiwp6Iq4ruoXpqsURjwv-Y5o0EUccSMm9z9uNtBof5Fm3md84m6iowsGaFEqyR0_1W3Cuni31XoCWhZLTGDbfi1Nq7aWXLVW5Wqp28f6DY-3_od2GrQJvlWu8dr2LD5G3h1T4PwLcx_r2Qx88Z4uzAzTTDdLjCRLOe2ILOcnDpBa8yHeIF8nagb0koMkD8SsTs5tu2-LyJzQ4ZlQYbVyUuCT1wx_68lawX1dzAZnFz2z7zmFwyexNWt9JBvMM4kjyMdy1gkAZeWc5OESeaCWfpKahsr5lTBjNKh0FLSzGeRwdaKJsF76OSL3H4AIpCaUKYFs4yGJtIKsUJGRZbR0Go_tl04xJFLmxAq0qo6zvx0PWxd-NzOWbqspTgea_Spnc0UA8VVP2RuFyvsD9O-U39ktAvkiTaOjIpAiKQLu7UnrL_keDFSZbH3PzOP4MX4eJD-GI6-f4SXiK9YfQJ-Hzrl9coeIIYp1WHluHeqcOqn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quasi-Periodic+Nanoripples+in+Graphene+Grown+by+Chemical+Vapor+Deposition+and+Its+Impact+on+Charge+Transport&rft.jtitle=ACS+nano&rft.au=Ni%2C+Guang-Xin&rft.au=Zheng%2C+Yi&rft.au=Bae%2C+Sukang&rft.au=Kim%2C+Hye+Ri&rft.date=2012-02-28&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=6&rft.issue=2&rft.spage=1158&rft.epage=1164&rft_id=info:doi/10.1021%2Fnn203775x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_nn203775x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon