Quasi-Periodic Nanoripples in Graphene Grown by Chemical Vapor Deposition and Its Impact on Charge Transport

The technical breakthrough in synthesizing graphene by chemical vapor deposition methods (CVD) has opened up enormous opportunities for large-scale device applications. To improve the electrical properties of CVD graphene grown on copper (Cu-CVD graphene), recent efforts have focused on increasing t...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 6; no. 2; pp. 1158 - 1164
Main Authors Ni, Guang-Xin, Zheng, Yi, Bae, Sukang, Kim, Hye Ri, Pachoud, Alexandre, Kim, Young Soo, Tan, Chang-Ling, Im, Danho, Ahn, Jong-Hyun, Hong, Byung Hee, Özyilmaz, Barbaros
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 28.02.2012
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The technical breakthrough in synthesizing graphene by chemical vapor deposition methods (CVD) has opened up enormous opportunities for large-scale device applications. To improve the electrical properties of CVD graphene grown on copper (Cu-CVD graphene), recent efforts have focused on increasing the grain size of such polycrystalline graphene films to 100 μm and larger. While an increase in grain size and, hence, a decrease of grain boundary density is expected to greatly enhance the device performance, here we show that the charge mobility and sheet resistance of Cu-CVD graphene is already limited within a single grain. We find that the current high-temperature growth and wet transfer methods of CVD graphene result in quasi-periodic nanoripple arrays (NRAs). Electron-flexural phonon scattering in such partially suspended graphene devices introduces anisotropic charge transport and sets limits to both the highest possible charge mobility and lowest possible sheet resistance values. Our findings provide guidance for further improving the CVD graphene growth and transfer process.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1936-0851
1936-086X
DOI:10.1021/nn203775x