Deep and shallow long-period volcanic seismicity linked by fluid-pressure transfer

Volcanic long-period earthquakes are attributed to pressure fluctuations that result from unsteady mass transport in the plumbing system of volcanoes. Whereas most of the long-period seismicity is located close to the surface, the volcanic deep long-period earthquakes that occur in the lower crust a...

Full description

Saved in:
Bibliographic Details
Published inNature geoscience Vol. 10; no. 6; pp. 442 - 445
Main Authors Shapiro, N. M., Droznin, D. V., Droznina, S. Ya, Senyukov, S. L., Gusev, A. A., Gordeev, E. I.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group 01.06.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Volcanic long-period earthquakes are attributed to pressure fluctuations that result from unsteady mass transport in the plumbing system of volcanoes. Whereas most of the long-period seismicity is located close to the surface, the volcanic deep long-period earthquakes that occur in the lower crust and uppermost mantle reflect the activity in the deep parts of magmatic systems. Here, we present observations of long-period earthquakes that occurred in 2011-2012 within the Klyuchevskoy volcano group in Kamchatka, Russia. We show two distinct groups of long-period sources: events that occurred just below the active volcanoes, and deep long-period events at depths of ∼30 km in the vicinity of a deep magmatic reservoir. We report systematic increases of the long-period seismicity levels prior to volcanic eruptions with the initial activation of the deep long-period sources that reflects pressurization of the deep reservoir and consequent transfer of the activity towards the surface. The relatively fast migration of the long-period activity suggests that a hydraulic connection is maintained between deep and shallow magmatic reservoirs. The reported observations provide evidence for the pre-eruptive reload of the shallow magmatic reservoirs from depth, and suggest that the deep long-period earthquakes could be used as a reliable early precursor of eruptions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1752-0894
1752-0908
DOI:10.1038/ngeo2952