Electrochemical Detection of Human Cytochrome P450 2A6 Inhibition: A Step toward Reducing Dependence on Smoking

Inhibition of human cytochrome P450 2A6 has been demonstrated to play an important role in nicotine metabolism and consequent smoking habits. Here, the “molecular Lego” approach was used to achieve the first reported electrochemical signal of human CYP2A6 and to improve its catalytic efficiency on e...

Full description

Saved in:
Bibliographic Details
Published inAnalytical chemistry (Washington) Vol. 86; no. 5; pp. 2760 - 2766
Main Authors Castrignanò, Silvia, Ortolani, Alex, Sadeghi, Sheila J., Di Nardo, Giovanna, Allegra, Paola, Gilardi, Gianfranco
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 04.03.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Inhibition of human cytochrome P450 2A6 has been demonstrated to play an important role in nicotine metabolism and consequent smoking habits. Here, the “molecular Lego” approach was used to achieve the first reported electrochemical signal of human CYP2A6 and to improve its catalytic efficiency on electrode surfaces. The enzyme was fused at the genetic level to flavodoxin from Desulfovibrio vulgaris (FLD) to create the chimeric CYP2A6-FLD. Electrochemical characterization by cyclic voltammetry shows clearly defined redox transitions of the haem domain in both CYP2A6 and CYP2A6-FLD. Electrocatalysis experiments using coumarin as substrate followed by fluorimetric quantification of the product were performed with immobilized CYP2A6 and CYP2A6-FLD. Comparison of the kinetic parameters showed that coumarin catalysis was carried out with a higher efficiency by the immobilized CYP2A6-FLD, with a calculated k cat value significantly higher (P < 0.005) than that of CYP2A6, whereas the affinity for the substrate (K M) remained unaltered. The chimeric system was also successfully used to demonstrate the inhibition of the electrochemical activity of the immobilized CYP2A6-FLD, toward both coumarin and nicotine substrates, by tranylcypromine, a potent and selective CYP2A6 inhibitor. This work shows that CYP2A6 turnover efficiency is improved when the protein is linked to the FLD redox module, and this strategy can be utilized for the development of new clinically relevant biotechnological approaches suitable for deciphering the metabolic implications of CYP2A6 polymorphism and for the screening of CYP2A6 substrates and inhibitors.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0003-2700
1520-6882
DOI:10.1021/ac4041839