Long-Term Evolution of Fracture Permeability in Slate: An Experimental Study with Implications for Enhanced Geothermal Systems (EGS)
The long-term sustainability of fractures within rocks determines whether it is reasonable to utilize such formations as potential EGS reservoirs. Representative for reservoirs in Variscan metamorphic rocks, three long-term (one month each) fracture permeability experiments on saw-cut slate core sam...
Saved in:
Published in | Geosciences (Basel) Vol. 11; no. 11; p. 443 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The long-term sustainability of fractures within rocks determines whether it is reasonable to utilize such formations as potential EGS reservoirs. Representative for reservoirs in Variscan metamorphic rocks, three long-term (one month each) fracture permeability experiments on saw-cut slate core samples from the Hahnenklee well (Harz Mountains, Germany) were performed. The purpose was to investigate fracture permeability evolution at temperatures up to 90 °C using both deionized water (DI) and a 0.5 M NaCl solution as the pore fluid. Flow with DI resulted in a fracture permeability decline that is more pronounced at 90 °C, but permeability slightly increased with the NaCl fluid. Microstructural observations and analyses of the effluent composition suggest that fracture permeability evolution is governed by an interplay of free-face dissolution and pressure solution. It is concluded that newly introduced fractures may be subject to a certain permeability reduction due to pressure solution that is unlikely to be mitigated. However, long-term fracture permeability may be sustainable or even increase by free-face dissolution when the injection fluid possesses a certain (NaCl) salinity. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2076-3263 2076-3263 |
DOI: | 10.3390/geosciences11110443 |