Highly Stable Concentrated Nanoemulsions by the Phase Inversion Composition Method at Elevated Temperature

Oil-in-water nanoemulsions were produced in the system water/Span 80–Tween 80/paraffin oil via the phase inversion composition (PIC) method at elevated temperature. With the increase of preparation temperature from 20 to 70 °C, we found that the emulsion droplet diameter decreases from 10.3 μm to 51...

Full description

Saved in:
Bibliographic Details
Published inLangmuir Vol. 28; no. 41; pp. 14547 - 14552
Main Authors Yu, Lijie, Li, Chao, Xu, Jian, Hao, Jingcheng, Sun, Dejun
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 16.10.2012
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Oil-in-water nanoemulsions were produced in the system water/Span 80–Tween 80/paraffin oil via the phase inversion composition (PIC) method at elevated temperature. With the increase of preparation temperature from 20 to 70 °C, we found that the emulsion droplet diameter decreases from 10.3 μm to 51 nm, proving the formation of nanoemulsions. The viscosity of nanoemulsions clearly increases with droplet volume fraction, φ, but the droplet size changes less. Significantly, at φ ≤ 0.5, the size distribution of nanoemulsions can be kept unchangeable more than 5 months. These results proved that the highly viscous paraffin oil can hardly be dispersed by the PIC method at 25 °C, but the increase in preparation temperature makes it possible for producing monodisperse nanoemulsions. Once the nanoemulsion is produced, the stability against Ostwald ripening is outstanding due to the extremely low solubility of the paraffin oil in the continuous phase. The highly stable nanoemulsions are of great importance in practical applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0743-7463
1520-5827
DOI:10.1021/la302995a