The combined use of MODFLOW and precipitation-runoff modeling to simulate groundwater flow in a diffuse-pollution prone watershed

A numerical modeling case study of groundwater flow in a diffuse pollution prone area is presented. The study area is located within the metropolitan borders of the city of Izmir, Turkey. This groundwater flow model was unconventional in the application since the groundwater recharge parameter in th...

Full description

Saved in:
Bibliographic Details
Published inWater science and technology Vol. 62; no. 1; pp. 180 - 188
Main Authors Elci, A, Karadas, D, Fistikoglu, O
Format Journal Article
LanguageEnglish
Published England IWA Publishing 01.01.2010
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A numerical modeling case study of groundwater flow in a diffuse pollution prone area is presented. The study area is located within the metropolitan borders of the city of Izmir, Turkey. This groundwater flow model was unconventional in the application since the groundwater recharge parameter in the model was estimated using a lumped, transient water-budget based precipitation-runoff model that was executed independent of the groundwater flow model. The recharge rate obtained from the calibrated precipitation-runoff model was used as input to the groundwater flow model, which was eventually calibrated to measured water table elevations. Overall, the flow model results were consistent with field observations and model statistics were satisfactory. Water budget results of the model revealed that groundwater recharge comprised about 20% of the total water input for the entire study area. Recharge was the second largest component in the budget after leakage from streams into the subsurface. It was concluded that the modeling results can be further used as input for contaminant transport modeling studies in order to evaluate the vulnerability of water resources of the study area to diffuse pollution.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0273-1223
1996-9732
DOI:10.2166/wst.2010.215