Direct Experimental Evidence for Markedly Enhanced Surface Proton Activity Inherent to Water Ice

Autoionization and subsequent proton transfer processes determine the proton activity inherent to water molecular systems. In this study, we provide direct experimental evidence that the proton activity is markedly enhanced at the surface of crystalline ice, on the basis of the simultaneous observat...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry letters Vol. 11; no. 7; pp. 2524 - 2529
Main Authors Kato, Fumiaki, Sugimoto, Toshiki, Matsumoto, Yoshiyasu
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 02.04.2020
Online AccessGet full text

Cover

Loading…
More Information
Summary:Autoionization and subsequent proton transfer processes determine the proton activity inherent to water molecular systems. In this study, we provide direct experimental evidence that the proton activity is markedly enhanced at the surface of crystalline ice, on the basis of the simultaneous observation of H/D exchange of water molecules at the surface and in the interior of well-defined double-layer ice films composed of H2O and D2O. Thermal desorption mass spectrometry showed clear signatures derived from the surface H/D exchange equilibrium, whereas infrared absorption spectroscopy indicated no appreciable H/D exchange progress in the interior. Detailed kinetic analyses revealed that the rate of H/D exchange at the surface is at least 3 orders of magnitude higher than in the interior. This drastic enhancement of the proton activity suggests an extremely high concentration of surface-hydrated protons in comparison with those in the bulk. Our results also highlight the impact of the local hydrogen-bond structure on the autoionization of water molecules.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.0c00384