Defect Transfer from Nanoparticles to Nanowires

Metal-seeded growth of one-dimensional (1D) semiconductor nanostructures is still a very active field of research, despite the huge progress which has been made in understanding this fundamental phenomenon. Liquid growth promoters allow control of the aspect ratio, diameter, and structure of 1D crys...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 11; no. 4; pp. 1550 - 1555
Main Authors Barth, Sven, Boland, John J, Holmes, Justin D
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 13.04.2011
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Metal-seeded growth of one-dimensional (1D) semiconductor nanostructures is still a very active field of research, despite the huge progress which has been made in understanding this fundamental phenomenon. Liquid growth promoters allow control of the aspect ratio, diameter, and structure of 1D crystals via external parameters, such as precursor feedstock, temperature, and operating pressure. However the transfer of crystallographic information from a catalytic nanoparticle seed to a growing nanowire has not been described in the literature. Here we define the theoretical requirements for transferring defects from nanoparticle seeds to growing semiconductor nanowires and describe why Ag nanoparticles are ideal candidates for this purpose. We detail in this paper the influence of solid Ag growth seeds on the crystal quality of Ge nanowires, synthesized using a supercritical fluid growth process. Significantly, under certain reaction conditions {111} stacking faults in the Ag seeds can be directly transferred to a high percentage of ⟨112⟩-oriented Ge nanowires, in the form of radial twins in the semiconductor crystals. Defect transfer from nanoparticles to nanowires could open up the possibility of engineering 1D nanostructures with new and tunable physical properties and morphologies.
ISSN:1530-6984
1530-6992
DOI:10.1021/nl104339w