Fabrication and Characterization of Deformable Porous Matrices with Controlled Pore Characteristics

The subject of this study concerns a method of manufacture of porous media for which the solid matrix is capable of experiencing deformation under the influence of the flow field. Conventionally, the matrix design parameters, elasticity and pore geometry, cannot be precisely controlled and the choic...

Full description

Saved in:
Bibliographic Details
Published inTransport in porous media Vol. 107; no. 1; pp. 79 - 94
Main Authors Munro, Benjamin, Becker, Sid, Uth, Marc Florian, Preußer, Niklas, Herwig, Heinz
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.03.2015
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The subject of this study concerns a method of manufacture of porous media for which the solid matrix is capable of experiencing deformation under the influence of the flow field. Conventionally, the matrix design parameters, elasticity and pore geometry, cannot be precisely controlled and the choice of parameters is limited to existing available media. Here a solution is provided that uses an indirect solid-free form fabrication process that combines 3D Printing with an infused Polydimethylsiloxane elastomer to provide a highly deformable matrix with controlled pore architecture. The manufacturing method is presented in detail. Local microscopy analysis of the manufactured matrix shows that the method has a high capability to accurately create pore structures at length scales as low as 0.75 mm. Experimental flow measurements further validate that the intended pore geometry is able to be reproduced in highly deformable matrices. The experimentally determined permeability of the deformable matrix is determined to agree with the intended within 95 %.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0169-3913
1573-1634
DOI:10.1007/s11242-014-0426-0