Formation of Alkanethiolate Self-Assembled Monolayers at Halide-Terminated Ge Surfaces

We have studied Ge halide passivation and formation of 1-octadecanethiolate self-assembled monolayers (SAMs) at Cl- and Br-terminated Ge(100) and Ge(111) surfaces. The results of water contact angle measurements, ellipsometry, transmission infrared spectroscopy, X-ray photoelectron spectroscopy, and...

Full description

Saved in:
Bibliographic Details
Published inLangmuir Vol. 25; no. 4; pp. 2013 - 2025
Main Authors Ardalan, Pendar, Musgrave, Charles B, Bent, Stacey F
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 17.02.2009
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We have studied Ge halide passivation and formation of 1-octadecanethiolate self-assembled monolayers (SAMs) at Cl- and Br-terminated Ge(100) and Ge(111) surfaces. The results of water contact angle measurements, ellipsometry, transmission infrared spectroscopy, X-ray photoelectron spectroscopy, and Auger electron spectroscopy show that good quality 1-alkanethiolate SAMs can be achieved at both Cl- and Br-terminated surfaces via direct Ge−S bonds. The quality of the SAMs depends on the concentration and the solvent of the 1-alkanethiol solution. Moreover, SAMs formed at Ge(100) surfaces have higher water contact angles, thicknesses, and ambient stability than those formed at Ge(111) surfaces. Surface passivation and light are found to play an important role in the packing and stability of the SAMs. Furthermore, well-packed SAMs can be retrieved by repassivation after degradation due to ambient exposure. This work presents novel routes for Ge surface passivation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0743-7463
1520-5827
DOI:10.1021/la803468e