Targeted Delivery of a γ‑Glutamyl Transpeptidase Activatable Near-Infrared-Fluorescent Probe for Selective Cancer Imaging

The noninvasive and specific detection of cancer cells in living subjects has been essential for the success of cancer diagnoses and treatments. Herein, we report a strategy of combining an αvβ3-integrin-receptor-targetable ligand, c-RGD, with the γ-glutamyl transpeptidase (GGT)-recognizable substra...

Full description

Saved in:
Bibliographic Details
Published inAnalytical chemistry (Washington) Vol. 90; no. 4; pp. 2875 - 2883
Main Authors Luo, Zhiliang, Huang, Zheng, Li, Ke, Sun, Yidan, Lin, Jianguo, Ye, Deju, Chen, Hong-Yuan
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 20.02.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The noninvasive and specific detection of cancer cells in living subjects has been essential for the success of cancer diagnoses and treatments. Herein, we report a strategy of combining an αvβ3-integrin-receptor-targetable ligand, c-RGD, with the γ-glutamyl transpeptidase (GGT)-recognizable substrate, γ-glutamate (γ-Glu), to develop a tumor-targeting and GGT-activatable near-infrared (NIR)-fluorescent probe for the noninvasive imaging of tumors in living mice. We demonstrated that the probe’s fluorescence was off initially, but when the γ-Glu in the probe was specifically cleaved by GGT, the fluorescent product was released and could be selectively taken up by U87MG-tumor cells via αvβ3-receptor-mediated endocytosis. Remarkably, enhanced intracellular NIR fluorescence distributed mainly in the lysosomes was observed in the tumor cells only, showing that the probe was capable of differentiating the tumor cells from the GGT-positive, αvβ3-deficient normal cells. Moreover, the probe also showed a high selectivity for the real-time and noninvasive detection of GGT activity in xenograft U87MG tumors following iv administration. This study reveals the advantage of using a combination of receptor-mediated cell uptake and molecular-target-triggered activation to design molecular probes for improved cancer imaging, which could facilitate effective cancer diagnoses.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0003-2700
1520-6882
1520-6882
DOI:10.1021/acs.analchem.7b05022