Universal Fully Integrated Wearable Sensor Arrays for the Multiple Electrolyte and Metabolite Monitoring in Raw Sweat, Saliva, or Urine
Fully integrated wearable sensors are capable of dynamically, directly, and independently tracking biomarkers in raw noninvasive biofluids without any other equipment or accessories by integrating the unique on-body monitoring feature with the special complete functional implementation attribute. Sw...
Saved in:
Published in | Analytical chemistry (Washington) Vol. 95; no. 16; pp. 6690 - 6699 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
25.04.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Fully integrated wearable sensors are capable of dynamically, directly, and independently tracking biomarkers in raw noninvasive biofluids without any other equipment or accessories by integrating the unique on-body monitoring feature with the special complete functional implementation attribute. Sweat, saliva, and urine are three important noninvasive biofluids, and changes in their biomarkers hold great potential for revealing physiological conditions. However, it is still a challenge to design single fully integrated wearable sensor arrays (FIWSAs) that are universally able to concurrently measure electrolytes and metabolites in three of the most common noninvasive biofluids including sweat, saliva, and urine. Here, we propose the first single universal FIWSAs for wirelessly, noninvasively, and simultaneously measuring various metabolites (i.e., uric acid) and electrolytes (i.e., Na+ and H+) in raw sweat, saliva, or urine under subjects’ exercise by integrating the specifically designed microfluidic, sensing, and electronic modules in a seamless manner. We evaluate its utility for noninvasive gout management in healthy subjects and in gout patients through a purine-rich meal challenge and with a medicine-treatment control, respectively. Noninvasive monitoring of multiple electrolytes and metabolites in a variety of raw noninvasive biofluids via such single universal FIWSAs may enrich the understanding of the biomarkers’ levels in the body and would also facilitate self-health management. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0003-2700 1520-6882 1520-6882 |
DOI: | 10.1021/acs.analchem.3c00361 |