Photoluminescence Imaging of Suspended Single-Walled Carbon Nanotubes
Single-walled carbon nanotubes (SWNTs) suspended in air over trenches are imaged using their intrinsic near-infrared (NIR) photoluminescence (1.0−1.6 μm). Far-field emission from extended suspended lengths (∼50 μm) is both spatially and spectrally resolved, and SWNTs are classified based on the spat...
Saved in:
Published in | Nano letters Vol. 6; no. 8; pp. 1603 - 1608 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
01.08.2006
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Single-walled carbon nanotubes (SWNTs) suspended in air over trenches are imaged using their intrinsic near-infrared (NIR) photoluminescence (1.0−1.6 μm). Far-field emission from extended suspended lengths (∼50 μm) is both spatially and spectrally resolved, and SWNTs are classified based on the spatial uniformity of their emission intensity and emission wavelength. In a few cases, emission assigned to different (n,m) species is observed along the same suspended segment. Most SWNTs imaged on millisecond time scales show steady emission, but a few fluctuate and suffer a reduction of intensity. The quantum efficiency is dramatically higher than that in previous reports and is estimated at 7%, a value that is precise but subject to corrections because of assumptions about absorption and coherence. |
---|---|
AbstractList | Single-walled carbon nanotubes (SWNTs) suspended in air over trenches are imaged using their intrinsic near-infrared (NIR) photoluminescence (1.0-1.6 microm). Far-field emission from extended suspended lengths (approximately 50 microm) is both spatially and spectrally resolved, and SWNTs are classified based on the spatial uniformity of their emission intensity and emission wavelength. In a few cases, emission assigned to different (n,m) species is observed along the same suspended segment. Most SWNTs imaged on millisecond time scales show steady emission, but a few fluctuate and suffer a reduction of intensity. The quantum efficiency is dramatically higher than that in previous reports and is estimated at 7%, a value that is precise but subject to corrections because of assumptions about absorption and coherence.Single-walled carbon nanotubes (SWNTs) suspended in air over trenches are imaged using their intrinsic near-infrared (NIR) photoluminescence (1.0-1.6 microm). Far-field emission from extended suspended lengths (approximately 50 microm) is both spatially and spectrally resolved, and SWNTs are classified based on the spatial uniformity of their emission intensity and emission wavelength. In a few cases, emission assigned to different (n,m) species is observed along the same suspended segment. Most SWNTs imaged on millisecond time scales show steady emission, but a few fluctuate and suffer a reduction of intensity. The quantum efficiency is dramatically higher than that in previous reports and is estimated at 7%, a value that is precise but subject to corrections because of assumptions about absorption and coherence. Single-walled carbon nanotubes (SWNTs) suspended in air over trenches are imaged using their intrinsic near-infrared (NIR) photoluminescence (1.0-1.6 microm). Far-field emission from extended suspended lengths (approximately 50 microm) is both spatially and spectrally resolved, and SWNTs are classified based on the spatial uniformity of their emission intensity and emission wavelength. In a few cases, emission assigned to different (n,m) species is observed along the same suspended segment. Most SWNTs imaged on millisecond time scales show steady emission, but a few fluctuate and suffer a reduction of intensity. The quantum efficiency is dramatically higher than that in previous reports and is estimated at 7%, a value that is precise but subject to corrections because of assumptions about absorption and coherence. Single-walled carbon nanotubes (SWNTs) suspended in air over trenches are imaged using their intrinsic near-infrared (NIR) photoluminescence (1.0−1.6 μm). Far-field emission from extended suspended lengths (∼50 μm) is both spatially and spectrally resolved, and SWNTs are classified based on the spatial uniformity of their emission intensity and emission wavelength. In a few cases, emission assigned to different (n,m) species is observed along the same suspended segment. Most SWNTs imaged on millisecond time scales show steady emission, but a few fluctuate and suffer a reduction of intensity. The quantum efficiency is dramatically higher than that in previous reports and is estimated at 7%, a value that is precise but subject to corrections because of assumptions about absorption and coherence. |
Author | Lefebvre, Jacques Austing, David G Bond, Jeffery Finnie, Paul |
Author_xml | – sequence: 1 givenname: Jacques surname: Lefebvre fullname: Lefebvre, Jacques – sequence: 2 givenname: David G surname: Austing fullname: Austing, David G – sequence: 3 givenname: Jeffery surname: Bond fullname: Bond, Jeffery – sequence: 4 givenname: Paul surname: Finnie fullname: Finnie, Paul |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18029426$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/16895343$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0EtLAzEQAOAgFfvQg39A9qLgYW32lU2OUnxBUaGKx2WandQt2aQmuwf_vZHWCiIEZhK-DDMzJgNjDRJymtCrhKbJ1GjKaJFRPCCjJMSYCZEO9jnPh2Ts_ZpSKrKCHpFhwrgosjwbkZvnd9tZ3beNQS_RSIweWlg1ZhVZFS16v0FTYx0twovG-A20DrcZuKU10SMY2_VL9MfkUIH2eLKLE_J6e_Myu4_nT3cPs-t5DDnlXawyRlUBUnGGCkExIQUDyTlmIUuXoqY58pKhUElZS14XGQ-nFCovVSmTbEIutnU3zn706LuqbULXWoNB2_uK8TKlYfYAz3awX7ZYVxvXtOA-q5_BAzjfAfAStHJgZON_HaepyFMW3OXWSWe9d6h-Ca2-l1_tlx_s9I-VTQddY03noNH__th1AdJXa9s7E7b3j_sC_KuRfg |
CitedBy_id | crossref_primary_10_1021_nl803004m crossref_primary_10_1016_j_nantod_2009_04_002 crossref_primary_10_1021_nl9016804 crossref_primary_10_1039_C2CS35335K crossref_primary_10_1380_jsssj_29_127 crossref_primary_10_1021_acsphotonics_8b00896 crossref_primary_10_1088_0957_4484_18_13_135603 crossref_primary_10_1103_PhysRevB_78_085411 crossref_primary_10_1142_S0217984915300045 crossref_primary_10_1021_acsnano_2c08392 crossref_primary_10_3390_s19204512 crossref_primary_10_1039_c3tc00947e crossref_primary_10_1063_5_0030809 crossref_primary_10_1557_PROC_0994_F04_02 crossref_primary_10_1021_cm101767c crossref_primary_10_1088_0034_4885_72_6_066502 crossref_primary_10_1021_jp1027492 crossref_primary_10_1038_s41467_024_47139_1 crossref_primary_10_1021_nn4041798 crossref_primary_10_1103_PhysRevLett_101_217402 crossref_primary_10_1021_acsomega_8b01071 crossref_primary_10_1021_nl062609p crossref_primary_10_1380_jsssj_28_97 crossref_primary_10_1103_PhysRevB_76_085404 crossref_primary_10_1021_nn300753a crossref_primary_10_1016_j_carbon_2016_05_002 crossref_primary_10_1088_0957_4484_19_33_335202 crossref_primary_10_1103_PhysRevLett_107_187401 crossref_primary_10_2183_pjab_100_022 crossref_primary_10_1103_PhysRevLett_104_017401 crossref_primary_10_1038_ncomms7335 crossref_primary_10_1063_1_4757100 crossref_primary_10_1002_pssb_200879552 crossref_primary_10_1038_nnano_2013_119 crossref_primary_10_1016_j_trac_2011_03_014 crossref_primary_10_1063_1_4928196 crossref_primary_10_1002_adfm_201200224 crossref_primary_10_1103_PhysRevLett_101_077402 crossref_primary_10_1002_adma_201001756 crossref_primary_10_1142_S1793545821300044 crossref_primary_10_1002_sia_4819 crossref_primary_10_1021_acs_jpca_2c03900 crossref_primary_10_1063_1_3443634 crossref_primary_10_1021_nn504553y crossref_primary_10_1002_smll_201503883 crossref_primary_10_1103_PhysRevB_85_085434 crossref_primary_10_1002_aelm_201800514 crossref_primary_10_1021_acsnano_5b04872 crossref_primary_10_1021_jp810892z crossref_primary_10_1021_acsphotonics_7b00786 crossref_primary_10_1063_1_2711178 crossref_primary_10_1021_jp1049217 crossref_primary_10_1007_s12274_020_2762_4 crossref_primary_10_1146_annurev_physchem_050317_014241 crossref_primary_10_1103_PhysRevLett_98_167406 crossref_primary_10_1016_j_jcis_2012_04_038 crossref_primary_10_1021_nn1031214 crossref_primary_10_1021_acsanm_9b02209 crossref_primary_10_1016_j_jlumin_2018_04_022 crossref_primary_10_1021_ja071553d crossref_primary_10_1038_srep37167 crossref_primary_10_1021_nl200077t crossref_primary_10_1021_nl071561s crossref_primary_10_1103_PhysRevB_77_165429 crossref_primary_10_1039_C5NR05163K crossref_primary_10_1021_nn9005736 crossref_primary_10_1021_nn9003956 crossref_primary_10_1002_adfm_201902273 crossref_primary_10_1039_C8NR02544D crossref_primary_10_1016_j_carbon_2018_02_031 crossref_primary_10_1149_2_0141801jss crossref_primary_10_1103_PhysRevLett_100_197402 crossref_primary_10_1021_am900369g crossref_primary_10_1039_c3tb21447h crossref_primary_10_1039_C4RA06098A crossref_primary_10_1063_1_4967988 crossref_primary_10_1038_srep14084 crossref_primary_10_1021_acsomega_8b00607 crossref_primary_10_1088_0957_4484_19_34_345701 crossref_primary_10_3390_ma10111335 crossref_primary_10_1002_adma_201400775 crossref_primary_10_1002_cphc_201000712 crossref_primary_10_1103_PhysRevB_80_075426 crossref_primary_10_1002_adfm_201702112 crossref_primary_10_1021_nn4027323 crossref_primary_10_1021_acsphotonics_8b01543 crossref_primary_10_1021_nl072014 crossref_primary_10_1021_nl5003729 crossref_primary_10_1021_nl901412x crossref_primary_10_1038_nnano_2009_319 crossref_primary_10_1038_nnano_2008_241 crossref_primary_10_1149_2_0121706jss crossref_primary_10_1021_nl072319o crossref_primary_10_1038_s41598_020_65757_9 crossref_primary_10_1021_nn204679s crossref_primary_10_1038_nnano_2008_369 crossref_primary_10_1016_j_carbon_2016_04_073 crossref_primary_10_1103_PhysRevResearch_4_L022011 crossref_primary_10_1002_smll_200801079 crossref_primary_10_1021_nl072809g crossref_primary_10_1021_nn403419d crossref_primary_10_1016_j_optmat_2019_109295 crossref_primary_10_1039_C4CS00306C crossref_primary_10_1039_C4NR03945A crossref_primary_10_1002_cphc_200900106 crossref_primary_10_1038_asiamat_2011_145 crossref_primary_10_1038_s41467_017_01777_w crossref_primary_10_1021_ja1087997 crossref_primary_10_1021_nl2028238 crossref_primary_10_1103_PhysRevB_89_235440 crossref_primary_10_1103_PhysRevB_78_155429 crossref_primary_10_1021_acs_jpclett_5b01032 crossref_primary_10_1039_c3cs60367a crossref_primary_10_1063_1_3530582 crossref_primary_10_1002_pssb_201800118 crossref_primary_10_3390_s17112569 crossref_primary_10_1038_nnano_2007_290 crossref_primary_10_1021_nl301739d crossref_primary_10_1016_j_mattod_2021_09_020 crossref_primary_10_1021_nn800364r crossref_primary_10_1149_2_0171601jss crossref_primary_10_1016_j_ccr_2021_214313 crossref_primary_10_1021_ja807224x crossref_primary_10_1103_PhysRevB_86_125431 crossref_primary_10_1155_2012_130725 crossref_primary_10_1021_nn4024152 crossref_primary_10_1016_j_biomaterials_2016_05_045 crossref_primary_10_1021_ja903705k crossref_primary_10_1038_ncomms3542 crossref_primary_10_1063_1_4915618 crossref_primary_10_1016_j_msec_2019_03_043 crossref_primary_10_1002_cphc_201100970 crossref_primary_10_1364_OE_18_005740 crossref_primary_10_1002_pssr_200903121 crossref_primary_10_1021_ja806586v crossref_primary_10_1103_PhysRevB_96_195410 crossref_primary_10_1021_acs_jpclett_6b02185 crossref_primary_10_1021_nl0622808 crossref_primary_10_1021_jp306515a crossref_primary_10_1021_acsphotonics_7b00455 crossref_primary_10_1038_nphoton_2013_179 crossref_primary_10_29328_journal_jpsp_1001077 crossref_primary_10_1021_acsnano_5b03873 crossref_primary_10_1038_nnano_2011_227 crossref_primary_10_1039_C4CC06542E crossref_primary_10_1007_s12274_011_0135_8 crossref_primary_10_1021_jp067398r crossref_primary_10_1016_j_jconrel_2015_04_021 crossref_primary_10_1063_5_0063774 crossref_primary_10_1002_cssc_201100070 crossref_primary_10_1039_C8NR03542C crossref_primary_10_1016_S1369_7021_10_70030_4 crossref_primary_10_1021_jp212040y crossref_primary_10_1021_ja305685v crossref_primary_10_1021_nl802423w crossref_primary_10_1038_nphoton_2008_94 crossref_primary_10_1103_PhysRevB_76_075422 crossref_primary_10_1016_j_molliq_2022_118525 crossref_primary_10_1007_s12274_009_9009_8 crossref_primary_10_1103_PhysRevLett_101_157401 crossref_primary_10_1002_smll_201800796 crossref_primary_10_1103_PhysRevLett_104_247402 |
Cites_doi | 10.1103/PhysRevB.69.075403 10.1021/jp0463159 10.1038/46248 10.1103/PhysRevB.73.235410 10.1126/science.1119070 10.1143/JJAP.43.L1118 10.1126/science.1110873 10.1103/PhysRevLett.93.037404 10.1103/PhysRevLett.93.076803 10.1021/nl034428i 10.1126/science.1080912 10.1103/PhysRevLett.92.177401 10.1103/PhysRevB.57.14983 10.1021/nl050366f 10.1116/1.1689301 10.1016/S0009-2614(03)00687-0 10.1103/PhysRevLett.94.247401 10.1063/1.2136435 10.1063/1.1894609 10.1126/science.1087118 10.1063/1.1857081 10.1103/PhysRevLett.93.027401 10.1021/nl051775e 10.1126/science.1072631 10.1103/PhysRevB.49.5643 10.1103/PhysRevLett.90.217401 |
ContentType | Journal Article |
Copyright | Copyright © 2006 American Chemical Society 2007 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2006 American Chemical Society – notice: 2007 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1021/nl060530e |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1530-6992 |
EndPage | 1608 |
ExternalDocumentID | 16895343 18029426 10_1021_nl060530e b048248049 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 123 4.4 55A 5VS 7~N AABXI ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF AFFNX ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 LG6 PK8 RNS ROL TN5 UI2 VF5 VG9 W1F X --- -~X AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK 53G 6P2 IQODW AAYOK CGR CUY CVF ECM EIF NPM PKN 7X8 |
ID | FETCH-LOGICAL-a408t-f360f5acf86efeaf69c96ac88e39c92b9d04e876e9f17dc8d53853879f47f7c13 |
IEDL.DBID | ACS |
ISSN | 1530-6984 |
IngestDate | Thu Jul 10 22:38:17 EDT 2025 Wed Feb 19 01:53:51 EST 2025 Mon Jul 21 09:14:25 EDT 2025 Thu Apr 24 23:07:34 EDT 2025 Tue Jul 01 00:42:20 EDT 2025 Thu Aug 27 13:42:06 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Near infrared radiation Singlewalled nanotube Near infrared spectrum Photoluminescence Far field Field emission Infrared spectra Quantum yield Spatial resolution |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a408t-f360f5acf86efeaf69c96ac88e39c92b9d04e876e9f17dc8d53853879f47f7c13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 16895343 |
PQID | 68720992 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_68720992 pubmed_primary_16895343 pascalfrancis_primary_18029426 crossref_primary_10_1021_nl060530e crossref_citationtrail_10_1021_nl060530e acs_journals_10_1021_nl060530e |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2006-08-00 |
PublicationDateYYYYMMDD | 2006-08-01 |
PublicationDate_xml | – month: 08 year: 2006 text: 2006-08-00 |
PublicationDecade | 2000 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States |
PublicationTitle | Nano letters |
PublicationTitleAlternate | Nano Lett |
PublicationYear | 2006 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Islam M. F. (nl060530eb00027/nl060530eb00027_1) 2004; 93 Lefebvre J. (nl060530eb00003/nl060530eb00003_1) 2003; 90 Kazaoui S. (nl060530eb00005/nl060530eb00005_1) 2005; 87 Wang F. (nl060530eb00028/nl060530eb00028_1) 2004; 92 Suzuki S. (nl060530eb00013/nl060530eb00013_1) 2004; 43 Weisman R. B. (nl060530eb00025/nl060530eb00025_1) 2003; 3 Yuzvinsky T. D. (nl060530eb00014/nl060530eb00014_1) 2005; 86 Chen J. (nl060530eb00007/nl060530eb00007_1) 2005; 310 Murakami Y. (nl060530eb00017/nl060530eb00017_1) 2003; 374 Yao Z. (nl060530eb00023/nl060530eb00023_1) 1999; 402 Kaminska K. (nl060530eb00015/nl060530eb00015_1) 2006; 73 Doorn S. K. (nl060530eb00024/nl060530eb00024_1) 2005; 109 Matsuda K. (nl060530eb00011/nl060530eb00011_1) 2005; 86 Han J. (nl060530eb00022/nl060530eb00022_1) 1998; 57 O'Connell M. J. (nl060530eb00002/nl060530eb00002_1) 2002; 297 Huang S. (nl060530eb00019/nl060530eb00019_1) 2003; 125 Tsyboulski D. A. (nl060530eb00004/nl060530eb00004_1) 2005; 5 Finnie P. (nl060530eb00021/nl060530eb00021_1) 2005; 94 Misevich J. A. (nl060530eb00006/nl060530eb00006_1) 2003; 300 Freitag M. (nl060530eb00008/nl060530eb00008_1) 2004; 93 Hartschuh A. (nl060530eb00009/nl060530eb00009_1) 2003; 301 Hartschuh A. (nl060530eb00012/nl060530eb00012_1) 2005; 5 Dunlap B. I. (nl060530eb00026/nl060530eb00026_1) 1994; 49 Htoon H. (nl060530eb00010/nl060530eb00010_1) 2004; 93 Finnie P. (nl060530eb00016/nl060530eb00016_1) 2004; 22 Lefebvre J. (nl060530eb00018/nl060530eb00018_1) 2004; 69 Lefebvre J. (nl060530eb00020/nl060530eb00020_1) 2004 Wang F. (nl060530eb00001/nl060530eb00001_1) 2005; 308 |
References_xml | – volume: 69 start-page: 075403 year: 2004 ident: nl060530eb00018/nl060530eb00018_1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.69.075403 – volume: 109 start-page: 3751 year: 2005 ident: nl060530eb00024/nl060530eb00024_1 publication-title: J. Phys. Chem. B doi: 10.1021/jp0463159 – volume: 125 start-page: 5637 year: 2003 ident: nl060530eb00019/nl060530eb00019_1 publication-title: J. Am. Chem. Soc. – volume: 402 start-page: 276 year: 1999 ident: nl060530eb00023/nl060530eb00023_1 publication-title: Nature doi: 10.1038/46248 – volume: 73 start-page: 235410 year: 2006 ident: nl060530eb00015/nl060530eb00015_1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.73.235410 – volume: 310 start-page: 1174 year: 2005 ident: nl060530eb00007/nl060530eb00007_1 publication-title: Science doi: 10.1126/science.1119070 – volume: 43 start-page: L1118 year: 2004 ident: nl060530eb00013/nl060530eb00013_1 publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.43.L1118 – volume: 308 start-page: 841 year: 2005 ident: nl060530eb00001/nl060530eb00001_1 publication-title: Science doi: 10.1126/science.1110873 – volume: 93 start-page: 037404 year: 2004 ident: nl060530eb00027/nl060530eb00027_1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.037404 – volume: 93 start-page: 076803 year: 2004 ident: nl060530eb00008/nl060530eb00008_1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.076803 – volume: 3 start-page: 1235 year: 2003 ident: nl060530eb00025/nl060530eb00025_1 publication-title: Nano Lett. doi: 10.1021/nl034428i – volume: 300 start-page: 786 year: 2003 ident: nl060530eb00006/nl060530eb00006_1 publication-title: Science doi: 10.1126/science.1080912 – volume: 92 start-page: 177401 year: 2004 ident: nl060530eb00028/nl060530eb00028_1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.92.177401 – volume: 57 start-page: 14983 year: 1998 ident: nl060530eb00022/nl060530eb00022_1 publication-title: Phys Rev. B doi: 10.1103/PhysRevB.57.14983 – volume: 5 start-page: 979 year: 2005 ident: nl060530eb00004/nl060530eb00004_1 publication-title: Nano Lett. doi: 10.1021/nl050366f – volume: 22 start-page: 751 year: 2004 ident: nl060530eb00016/nl060530eb00016_1 publication-title: J. Vac. Sci. Technol., A doi: 10.1116/1.1689301 – volume: 374 start-page: 53 year: 2003 ident: nl060530eb00017/nl060530eb00017_1 publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(03)00687-0 – volume: 94 start-page: 247401 year: 2005 ident: nl060530eb00021/nl060530eb00021_1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.94.247401 – volume: 87 start-page: 211914 year: 2005 ident: nl060530eb00005/nl060530eb00005_1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2136435 – volume: 86 start-page: 123116 year: 2005 ident: nl060530eb00011/nl060530eb00011_1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1894609 – volume: 301 start-page: 1356 year: 2003 ident: nl060530eb00009/nl060530eb00009_1 publication-title: Science doi: 10.1126/science.1087118 – volume-title: Process year: 2004 ident: nl060530eb00020/nl060530eb00020_1 – volume: 86 start-page: 053109 year: 2005 ident: nl060530eb00014/nl060530eb00014_1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1857081 – volume: 93 start-page: 027401 year: 2004 ident: nl060530eb00010/nl060530eb00010_1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.027401 – volume: 5 start-page: 2313 year: 2005 ident: nl060530eb00012/nl060530eb00012_1 publication-title: Nano Lett. doi: 10.1021/nl051775e – volume: 297 start-page: 596 year: 2002 ident: nl060530eb00002/nl060530eb00002_1 publication-title: Science doi: 10.1126/science.1072631 – volume: 49 start-page: 5643 year: 1994 ident: nl060530eb00026/nl060530eb00026_1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.49.5643 – volume: 90 start-page: 217401 year: 2003 ident: nl060530eb00003/nl060530eb00003_1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.90.217401 |
SSID | ssj0009350 |
Score | 2.3038778 |
Snippet | Single-walled carbon nanotubes (SWNTs) suspended in air over trenches are imaged using their intrinsic near-infrared (NIR) photoluminescence (1.0−1.6 μm).... Single-walled carbon nanotubes (SWNTs) suspended in air over trenches are imaged using their intrinsic near-infrared (NIR) photoluminescence (1.0-1.6 microm).... |
SourceID | proquest pubmed pascalfrancis crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1603 |
SubjectTerms | Condensed matter: electronic structure, electrical, magnetic, and optical properties Cross-disciplinary physics: materials science; rheology Electron and ion emission by liquids and solids; impact phenomena Exact sciences and technology Field emission, ionization, evaporation, and desorption Light Luminescent Measurements - methods Materials science Materials Testing - methods Microscopy, Fluorescence - methods Nanoscale materials and structures: fabrication and characterization Nanotechnology - methods Nanotubes Nanotubes, Carbon - analysis Nanotubes, Carbon - chemistry Nanotubes, Carbon - radiation effects Nanotubes, Carbon - ultrastructure Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation Photoluminescence Physics Spectrometry, Fluorescence - methods |
Title | Photoluminescence Imaging of Suspended Single-Walled Carbon Nanotubes |
URI | http://dx.doi.org/10.1021/nl060530e https://www.ncbi.nlm.nih.gov/pubmed/16895343 https://www.proquest.com/docview/68720992 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhR1db9Mw8DTGCwgBgwHlo4vYHnhJSWzHsR9RaVWQQEjdpL1F_tQkSlItyQu_nnOSrpu2DikPiXWW4vu273wHcMJwS4G8kcY5QsTM6izWJJEx6mNubWqpycJt5B8_-eKMfT_PzvfgeEcEn6Sfy1WCLjdN3AN4SDgKb_B_psttZV3atWFFycV9kBRsUz7o-tRgekx9w_Q8WasaseD79hW7_cvOzsyfwdfNbZ0-veT3pG30xPy9XbzxviU8h6eDnxl96RnjAPZc-QIeX6s--BJmvy6qJiinkPlugoRH3_50TYuiykfLtu7a49poiSMrF4cjd_yaqktdlRFq5apptasP4Ww-O50u4qGrQqxYIprYU574TBkvuPNOeS6N5MoI4Si-ES1twhyi2Umf5tYIiyoRn1x6lvvcpPQV7JdV6d5AhMJPjGKE8cSw3AqtMqOM9mjhvDeejGCMaC8GqaiLLuBN0uIKHyP4tKFIYYaa5KE1xuou0I9XoOu-EMddQOMbZN1CioRIdEZGcLShc4FyFIIjqnRVWxfIWeEWMf7z657827lcyIwy-vZ_q3kHj_oDmpAe-B72m8vWfUCXpdHjjmX_AY6Z5V0 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8QwFA4uBxVxX8ZlLOLBS7VLmiZHGZRxRRgFbyUrgmMrtr34631JO46KotBDW15Llrdl-z6EDjAMKUA3Qj8FCR8rkfgiCpgP_pgoFapYJvY08vUN6d_ji4fkoYXJsWdhoBAl_Kl0i_hjdIHwOB8GkHnHgZ5E05CERFabT3qDMcBu7NhYwYBhOMQoHqEIff7URiBZfolA8y-8hMYwDYvF72mmCzdniw1vkSuo22XydFRX4ki-fcNw_F9NltBCm3V6J42aLKMJna-guU9YhKvo9PaxqKyrsvvgpbV37_zZURh5hfEGdenIcpU3gDdD7dsJeHjq8VdR5B746KKqhS7X0P3Z6V2v77ccCz7HAa18E5PAJFwaSrTR3BAmGeGSUh3DXSSYCrAGj6mZCVMlqQIHCVfKDE5NKsN4HU3lRa43kQeuIJIcR5gEEqeKCp5ILoWBeGeMNFEHdaE5stZGyswtf0dh9tEeHXQ46phMtgjllihj-JPo_ofoSwPL8ZNQ90vvjiVpEDFITTpob9TdGViVXSrhuS7qMiM0tWeKocwbjRaMvyWUJTGOt_6qzR6a6d9dX2VX5zeX22i2mbqxGwd30FT1WutdSGYq0XVa_A6oCe2- |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT9wwFH5ikSpQ1dKWZWgZIsShl0AWx7GPaMqIrRRpQOIWeRUSQzIiyaW_nuckMwOIqkg5JNZz5OVt9rO_B7BPcEmBvBH6KVL4RMvEl1HAfdTHVOtQxypxt5F_X9KTG3J2m9x2C0V3FwYbUeKfyiaI76R6om2HMBAe5uMAve84MIuw7MJ1jqOPBqM5yG7cZGRFIcYlEWdkiiT0vKqzQqp8YYU-TkSJA2LbTBb_djUbkzP8DH9mjW1Omtwf1JU8UH9f4Ti-vzdr8KnzPr2jll2-wILJv8LqM0zCb3B8dVdUTmW58_DKyb13-tCkMvIK643qskmaq70RloyN7zbi8WsgHmWRe6iri6qWplyHm-Hx9eDE73It-IIErPJtTAObCGUZNdYIS7niVCjGTIxvkeQ6IAY1p-E2TLViGhUlPim3JLWpCuMNWMqL3GyBhyohUoJEhAaKpJpJkSihpEW7Z62yUQ_6OCRZJytl1oTBozCbjUcPfk4nJ1MdUrlLmDF-i3RvRjpp4TneIuq_mOE5JQsiji5KD3anU56hdLmQichNUZcZZam7W4xt3mw5YV6XMp7EJN7-X2924cPVr2F2cXp5_h1W2h0cd37wByxVj7XZQZ-mkv2GkZ8AdMHwQQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photoluminescence+imaging+of+suspended+single-walled+carbon+nanotubes&rft.jtitle=Nano+letters&rft.au=LEFEBVRE%2C+Jacques&rft.au=AUSTING%2C+David+G&rft.au=BOND%2C+Jeffery&rft.au=FINNIE%2C+Paul&rft.date=2006-08-01&rft.pub=American+Chemical+Society&rft.issn=1530-6984&rft.volume=6&rft.issue=8&rft.spage=1603&rft.epage=1608&rft_id=info:doi/10.1021%2Fnl060530e&rft.externalDBID=n%2Fa&rft.externalDocID=18029426 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon |