Photoluminescence Imaging of Suspended Single-Walled Carbon Nanotubes

Single-walled carbon nanotubes (SWNTs) suspended in air over trenches are imaged using their intrinsic near-infrared (NIR) photoluminescence (1.0−1.6 μm). Far-field emission from extended suspended lengths (∼50 μm) is both spatially and spectrally resolved, and SWNTs are classified based on the spat...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 6; no. 8; pp. 1603 - 1608
Main Authors Lefebvre, Jacques, Austing, David G, Bond, Jeffery, Finnie, Paul
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 01.08.2006
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Single-walled carbon nanotubes (SWNTs) suspended in air over trenches are imaged using their intrinsic near-infrared (NIR) photoluminescence (1.0−1.6 μm). Far-field emission from extended suspended lengths (∼50 μm) is both spatially and spectrally resolved, and SWNTs are classified based on the spatial uniformity of their emission intensity and emission wavelength. In a few cases, emission assigned to different (n,m) species is observed along the same suspended segment. Most SWNTs imaged on millisecond time scales show steady emission, but a few fluctuate and suffer a reduction of intensity. The quantum efficiency is dramatically higher than that in previous reports and is estimated at 7%, a value that is precise but subject to corrections because of assumptions about absorption and coherence.
AbstractList Single-walled carbon nanotubes (SWNTs) suspended in air over trenches are imaged using their intrinsic near-infrared (NIR) photoluminescence (1.0-1.6 microm). Far-field emission from extended suspended lengths (approximately 50 microm) is both spatially and spectrally resolved, and SWNTs are classified based on the spatial uniformity of their emission intensity and emission wavelength. In a few cases, emission assigned to different (n,m) species is observed along the same suspended segment. Most SWNTs imaged on millisecond time scales show steady emission, but a few fluctuate and suffer a reduction of intensity. The quantum efficiency is dramatically higher than that in previous reports and is estimated at 7%, a value that is precise but subject to corrections because of assumptions about absorption and coherence.Single-walled carbon nanotubes (SWNTs) suspended in air over trenches are imaged using their intrinsic near-infrared (NIR) photoluminescence (1.0-1.6 microm). Far-field emission from extended suspended lengths (approximately 50 microm) is both spatially and spectrally resolved, and SWNTs are classified based on the spatial uniformity of their emission intensity and emission wavelength. In a few cases, emission assigned to different (n,m) species is observed along the same suspended segment. Most SWNTs imaged on millisecond time scales show steady emission, but a few fluctuate and suffer a reduction of intensity. The quantum efficiency is dramatically higher than that in previous reports and is estimated at 7%, a value that is precise but subject to corrections because of assumptions about absorption and coherence.
Single-walled carbon nanotubes (SWNTs) suspended in air over trenches are imaged using their intrinsic near-infrared (NIR) photoluminescence (1.0-1.6 microm). Far-field emission from extended suspended lengths (approximately 50 microm) is both spatially and spectrally resolved, and SWNTs are classified based on the spatial uniformity of their emission intensity and emission wavelength. In a few cases, emission assigned to different (n,m) species is observed along the same suspended segment. Most SWNTs imaged on millisecond time scales show steady emission, but a few fluctuate and suffer a reduction of intensity. The quantum efficiency is dramatically higher than that in previous reports and is estimated at 7%, a value that is precise but subject to corrections because of assumptions about absorption and coherence.
Single-walled carbon nanotubes (SWNTs) suspended in air over trenches are imaged using their intrinsic near-infrared (NIR) photoluminescence (1.0−1.6 μm). Far-field emission from extended suspended lengths (∼50 μm) is both spatially and spectrally resolved, and SWNTs are classified based on the spatial uniformity of their emission intensity and emission wavelength. In a few cases, emission assigned to different (n,m) species is observed along the same suspended segment. Most SWNTs imaged on millisecond time scales show steady emission, but a few fluctuate and suffer a reduction of intensity. The quantum efficiency is dramatically higher than that in previous reports and is estimated at 7%, a value that is precise but subject to corrections because of assumptions about absorption and coherence.
Author Lefebvre, Jacques
Austing, David G
Bond, Jeffery
Finnie, Paul
Author_xml – sequence: 1
  givenname: Jacques
  surname: Lefebvre
  fullname: Lefebvre, Jacques
– sequence: 2
  givenname: David G
  surname: Austing
  fullname: Austing, David G
– sequence: 3
  givenname: Jeffery
  surname: Bond
  fullname: Bond, Jeffery
– sequence: 4
  givenname: Paul
  surname: Finnie
  fullname: Finnie, Paul
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18029426$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/16895343$$D View this record in MEDLINE/PubMed
BookMark eNpt0EtLAzEQAOAgFfvQg39A9qLgYW32lU2OUnxBUaGKx2WandQt2aQmuwf_vZHWCiIEZhK-DDMzJgNjDRJymtCrhKbJ1GjKaJFRPCCjJMSYCZEO9jnPh2Ts_ZpSKrKCHpFhwrgosjwbkZvnd9tZ3beNQS_RSIweWlg1ZhVZFS16v0FTYx0twovG-A20DrcZuKU10SMY2_VL9MfkUIH2eLKLE_J6e_Myu4_nT3cPs-t5DDnlXawyRlUBUnGGCkExIQUDyTlmIUuXoqY58pKhUElZS14XGQ-nFCovVSmTbEIutnU3zn706LuqbULXWoNB2_uK8TKlYfYAz3awX7ZYVxvXtOA-q5_BAzjfAfAStHJgZON_HaepyFMW3OXWSWe9d6h-Ca2-l1_tlx_s9I-VTQddY03noNH__th1AdJXa9s7E7b3j_sC_KuRfg
CitedBy_id crossref_primary_10_1021_nl803004m
crossref_primary_10_1016_j_nantod_2009_04_002
crossref_primary_10_1021_nl9016804
crossref_primary_10_1039_C2CS35335K
crossref_primary_10_1380_jsssj_29_127
crossref_primary_10_1021_acsphotonics_8b00896
crossref_primary_10_1088_0957_4484_18_13_135603
crossref_primary_10_1103_PhysRevB_78_085411
crossref_primary_10_1142_S0217984915300045
crossref_primary_10_1021_acsnano_2c08392
crossref_primary_10_3390_s19204512
crossref_primary_10_1039_c3tc00947e
crossref_primary_10_1063_5_0030809
crossref_primary_10_1557_PROC_0994_F04_02
crossref_primary_10_1021_cm101767c
crossref_primary_10_1088_0034_4885_72_6_066502
crossref_primary_10_1021_jp1027492
crossref_primary_10_1038_s41467_024_47139_1
crossref_primary_10_1021_nn4041798
crossref_primary_10_1103_PhysRevLett_101_217402
crossref_primary_10_1021_acsomega_8b01071
crossref_primary_10_1021_nl062609p
crossref_primary_10_1380_jsssj_28_97
crossref_primary_10_1103_PhysRevB_76_085404
crossref_primary_10_1021_nn300753a
crossref_primary_10_1016_j_carbon_2016_05_002
crossref_primary_10_1088_0957_4484_19_33_335202
crossref_primary_10_1103_PhysRevLett_107_187401
crossref_primary_10_2183_pjab_100_022
crossref_primary_10_1103_PhysRevLett_104_017401
crossref_primary_10_1038_ncomms7335
crossref_primary_10_1063_1_4757100
crossref_primary_10_1002_pssb_200879552
crossref_primary_10_1038_nnano_2013_119
crossref_primary_10_1016_j_trac_2011_03_014
crossref_primary_10_1063_1_4928196
crossref_primary_10_1002_adfm_201200224
crossref_primary_10_1103_PhysRevLett_101_077402
crossref_primary_10_1002_adma_201001756
crossref_primary_10_1142_S1793545821300044
crossref_primary_10_1002_sia_4819
crossref_primary_10_1021_acs_jpca_2c03900
crossref_primary_10_1063_1_3443634
crossref_primary_10_1021_nn504553y
crossref_primary_10_1002_smll_201503883
crossref_primary_10_1103_PhysRevB_85_085434
crossref_primary_10_1002_aelm_201800514
crossref_primary_10_1021_acsnano_5b04872
crossref_primary_10_1021_jp810892z
crossref_primary_10_1021_acsphotonics_7b00786
crossref_primary_10_1063_1_2711178
crossref_primary_10_1021_jp1049217
crossref_primary_10_1007_s12274_020_2762_4
crossref_primary_10_1146_annurev_physchem_050317_014241
crossref_primary_10_1103_PhysRevLett_98_167406
crossref_primary_10_1016_j_jcis_2012_04_038
crossref_primary_10_1021_nn1031214
crossref_primary_10_1021_acsanm_9b02209
crossref_primary_10_1016_j_jlumin_2018_04_022
crossref_primary_10_1021_ja071553d
crossref_primary_10_1038_srep37167
crossref_primary_10_1021_nl200077t
crossref_primary_10_1021_nl071561s
crossref_primary_10_1103_PhysRevB_77_165429
crossref_primary_10_1039_C5NR05163K
crossref_primary_10_1021_nn9005736
crossref_primary_10_1021_nn9003956
crossref_primary_10_1002_adfm_201902273
crossref_primary_10_1039_C8NR02544D
crossref_primary_10_1016_j_carbon_2018_02_031
crossref_primary_10_1149_2_0141801jss
crossref_primary_10_1103_PhysRevLett_100_197402
crossref_primary_10_1021_am900369g
crossref_primary_10_1039_c3tb21447h
crossref_primary_10_1039_C4RA06098A
crossref_primary_10_1063_1_4967988
crossref_primary_10_1038_srep14084
crossref_primary_10_1021_acsomega_8b00607
crossref_primary_10_1088_0957_4484_19_34_345701
crossref_primary_10_3390_ma10111335
crossref_primary_10_1002_adma_201400775
crossref_primary_10_1002_cphc_201000712
crossref_primary_10_1103_PhysRevB_80_075426
crossref_primary_10_1002_adfm_201702112
crossref_primary_10_1021_nn4027323
crossref_primary_10_1021_acsphotonics_8b01543
crossref_primary_10_1021_nl072014
crossref_primary_10_1021_nl5003729
crossref_primary_10_1021_nl901412x
crossref_primary_10_1038_nnano_2009_319
crossref_primary_10_1038_nnano_2008_241
crossref_primary_10_1149_2_0121706jss
crossref_primary_10_1021_nl072319o
crossref_primary_10_1038_s41598_020_65757_9
crossref_primary_10_1021_nn204679s
crossref_primary_10_1038_nnano_2008_369
crossref_primary_10_1016_j_carbon_2016_04_073
crossref_primary_10_1103_PhysRevResearch_4_L022011
crossref_primary_10_1002_smll_200801079
crossref_primary_10_1021_nl072809g
crossref_primary_10_1021_nn403419d
crossref_primary_10_1016_j_optmat_2019_109295
crossref_primary_10_1039_C4CS00306C
crossref_primary_10_1039_C4NR03945A
crossref_primary_10_1002_cphc_200900106
crossref_primary_10_1038_asiamat_2011_145
crossref_primary_10_1038_s41467_017_01777_w
crossref_primary_10_1021_ja1087997
crossref_primary_10_1021_nl2028238
crossref_primary_10_1103_PhysRevB_89_235440
crossref_primary_10_1103_PhysRevB_78_155429
crossref_primary_10_1021_acs_jpclett_5b01032
crossref_primary_10_1039_c3cs60367a
crossref_primary_10_1063_1_3530582
crossref_primary_10_1002_pssb_201800118
crossref_primary_10_3390_s17112569
crossref_primary_10_1038_nnano_2007_290
crossref_primary_10_1021_nl301739d
crossref_primary_10_1016_j_mattod_2021_09_020
crossref_primary_10_1021_nn800364r
crossref_primary_10_1149_2_0171601jss
crossref_primary_10_1016_j_ccr_2021_214313
crossref_primary_10_1021_ja807224x
crossref_primary_10_1103_PhysRevB_86_125431
crossref_primary_10_1155_2012_130725
crossref_primary_10_1021_nn4024152
crossref_primary_10_1016_j_biomaterials_2016_05_045
crossref_primary_10_1021_ja903705k
crossref_primary_10_1038_ncomms3542
crossref_primary_10_1063_1_4915618
crossref_primary_10_1016_j_msec_2019_03_043
crossref_primary_10_1002_cphc_201100970
crossref_primary_10_1364_OE_18_005740
crossref_primary_10_1002_pssr_200903121
crossref_primary_10_1021_ja806586v
crossref_primary_10_1103_PhysRevB_96_195410
crossref_primary_10_1021_acs_jpclett_6b02185
crossref_primary_10_1021_nl0622808
crossref_primary_10_1021_jp306515a
crossref_primary_10_1021_acsphotonics_7b00455
crossref_primary_10_1038_nphoton_2013_179
crossref_primary_10_29328_journal_jpsp_1001077
crossref_primary_10_1021_acsnano_5b03873
crossref_primary_10_1038_nnano_2011_227
crossref_primary_10_1039_C4CC06542E
crossref_primary_10_1007_s12274_011_0135_8
crossref_primary_10_1021_jp067398r
crossref_primary_10_1016_j_jconrel_2015_04_021
crossref_primary_10_1063_5_0063774
crossref_primary_10_1002_cssc_201100070
crossref_primary_10_1039_C8NR03542C
crossref_primary_10_1016_S1369_7021_10_70030_4
crossref_primary_10_1021_jp212040y
crossref_primary_10_1021_ja305685v
crossref_primary_10_1021_nl802423w
crossref_primary_10_1038_nphoton_2008_94
crossref_primary_10_1103_PhysRevB_76_075422
crossref_primary_10_1016_j_molliq_2022_118525
crossref_primary_10_1007_s12274_009_9009_8
crossref_primary_10_1103_PhysRevLett_101_157401
crossref_primary_10_1002_smll_201800796
crossref_primary_10_1103_PhysRevLett_104_247402
Cites_doi 10.1103/PhysRevB.69.075403
10.1021/jp0463159
10.1038/46248
10.1103/PhysRevB.73.235410
10.1126/science.1119070
10.1143/JJAP.43.L1118
10.1126/science.1110873
10.1103/PhysRevLett.93.037404
10.1103/PhysRevLett.93.076803
10.1021/nl034428i
10.1126/science.1080912
10.1103/PhysRevLett.92.177401
10.1103/PhysRevB.57.14983
10.1021/nl050366f
10.1116/1.1689301
10.1016/S0009-2614(03)00687-0
10.1103/PhysRevLett.94.247401
10.1063/1.2136435
10.1063/1.1894609
10.1126/science.1087118
10.1063/1.1857081
10.1103/PhysRevLett.93.027401
10.1021/nl051775e
10.1126/science.1072631
10.1103/PhysRevB.49.5643
10.1103/PhysRevLett.90.217401
ContentType Journal Article
Copyright Copyright © 2006 American Chemical Society
2007 INIST-CNRS
Copyright_xml – notice: Copyright © 2006 American Chemical Society
– notice: 2007 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/nl060530e
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1530-6992
EndPage 1608
ExternalDocumentID 16895343
18029426
10_1021_nl060530e
b048248049
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
123
4.4
55A
5VS
7~N
AABXI
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
AFFNX
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
---
-~X
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
53G
6P2
IQODW
AAYOK
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7X8
ID FETCH-LOGICAL-a408t-f360f5acf86efeaf69c96ac88e39c92b9d04e876e9f17dc8d53853879f47f7c13
IEDL.DBID ACS
ISSN 1530-6984
IngestDate Thu Jul 10 22:38:17 EDT 2025
Wed Feb 19 01:53:51 EST 2025
Mon Jul 21 09:14:25 EDT 2025
Thu Apr 24 23:07:34 EDT 2025
Tue Jul 01 00:42:20 EDT 2025
Thu Aug 27 13:42:06 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Near infrared radiation
Singlewalled nanotube
Near infrared spectrum
Photoluminescence
Far field
Field emission
Infrared spectra
Quantum yield
Spatial resolution
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a408t-f360f5acf86efeaf69c96ac88e39c92b9d04e876e9f17dc8d53853879f47f7c13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 16895343
PQID 68720992
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_68720992
pubmed_primary_16895343
pascalfrancis_primary_18029426
crossref_primary_10_1021_nl060530e
crossref_citationtrail_10_1021_nl060530e
acs_journals_10_1021_nl060530e
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-08-00
PublicationDateYYYYMMDD 2006-08-01
PublicationDate_xml – month: 08
  year: 2006
  text: 2006-08-00
PublicationDecade 2000
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2006
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Islam M. F. (nl060530eb00027/nl060530eb00027_1) 2004; 93
Lefebvre J. (nl060530eb00003/nl060530eb00003_1) 2003; 90
Kazaoui S. (nl060530eb00005/nl060530eb00005_1) 2005; 87
Wang F. (nl060530eb00028/nl060530eb00028_1) 2004; 92
Suzuki S. (nl060530eb00013/nl060530eb00013_1) 2004; 43
Weisman R. B. (nl060530eb00025/nl060530eb00025_1) 2003; 3
Yuzvinsky T. D. (nl060530eb00014/nl060530eb00014_1) 2005; 86
Chen J. (nl060530eb00007/nl060530eb00007_1) 2005; 310
Murakami Y. (nl060530eb00017/nl060530eb00017_1) 2003; 374
Yao Z. (nl060530eb00023/nl060530eb00023_1) 1999; 402
Kaminska K. (nl060530eb00015/nl060530eb00015_1) 2006; 73
Doorn S. K. (nl060530eb00024/nl060530eb00024_1) 2005; 109
Matsuda K. (nl060530eb00011/nl060530eb00011_1) 2005; 86
Han J. (nl060530eb00022/nl060530eb00022_1) 1998; 57
O'Connell M. J. (nl060530eb00002/nl060530eb00002_1) 2002; 297
Huang S. (nl060530eb00019/nl060530eb00019_1) 2003; 125
Tsyboulski D. A. (nl060530eb00004/nl060530eb00004_1) 2005; 5
Finnie P. (nl060530eb00021/nl060530eb00021_1) 2005; 94
Misevich J. A. (nl060530eb00006/nl060530eb00006_1) 2003; 300
Freitag M. (nl060530eb00008/nl060530eb00008_1) 2004; 93
Hartschuh A. (nl060530eb00009/nl060530eb00009_1) 2003; 301
Hartschuh A. (nl060530eb00012/nl060530eb00012_1) 2005; 5
Dunlap B. I. (nl060530eb00026/nl060530eb00026_1) 1994; 49
Htoon H. (nl060530eb00010/nl060530eb00010_1) 2004; 93
Finnie P. (nl060530eb00016/nl060530eb00016_1) 2004; 22
Lefebvre J. (nl060530eb00018/nl060530eb00018_1) 2004; 69
Lefebvre J. (nl060530eb00020/nl060530eb00020_1) 2004
Wang F. (nl060530eb00001/nl060530eb00001_1) 2005; 308
References_xml – volume: 69
  start-page: 075403
  year: 2004
  ident: nl060530eb00018/nl060530eb00018_1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.69.075403
– volume: 109
  start-page: 3751
  year: 2005
  ident: nl060530eb00024/nl060530eb00024_1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0463159
– volume: 125
  start-page: 5637
  year: 2003
  ident: nl060530eb00019/nl060530eb00019_1
  publication-title: J. Am. Chem. Soc.
– volume: 402
  start-page: 276
  year: 1999
  ident: nl060530eb00023/nl060530eb00023_1
  publication-title: Nature
  doi: 10.1038/46248
– volume: 73
  start-page: 235410
  year: 2006
  ident: nl060530eb00015/nl060530eb00015_1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.73.235410
– volume: 310
  start-page: 1174
  year: 2005
  ident: nl060530eb00007/nl060530eb00007_1
  publication-title: Science
  doi: 10.1126/science.1119070
– volume: 43
  start-page: L1118
  year: 2004
  ident: nl060530eb00013/nl060530eb00013_1
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.43.L1118
– volume: 308
  start-page: 841
  year: 2005
  ident: nl060530eb00001/nl060530eb00001_1
  publication-title: Science
  doi: 10.1126/science.1110873
– volume: 93
  start-page: 037404
  year: 2004
  ident: nl060530eb00027/nl060530eb00027_1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.037404
– volume: 93
  start-page: 076803
  year: 2004
  ident: nl060530eb00008/nl060530eb00008_1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.076803
– volume: 3
  start-page: 1235
  year: 2003
  ident: nl060530eb00025/nl060530eb00025_1
  publication-title: Nano Lett.
  doi: 10.1021/nl034428i
– volume: 300
  start-page: 786
  year: 2003
  ident: nl060530eb00006/nl060530eb00006_1
  publication-title: Science
  doi: 10.1126/science.1080912
– volume: 92
  start-page: 177401
  year: 2004
  ident: nl060530eb00028/nl060530eb00028_1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.92.177401
– volume: 57
  start-page: 14983
  year: 1998
  ident: nl060530eb00022/nl060530eb00022_1
  publication-title: Phys Rev. B
  doi: 10.1103/PhysRevB.57.14983
– volume: 5
  start-page: 979
  year: 2005
  ident: nl060530eb00004/nl060530eb00004_1
  publication-title: Nano Lett.
  doi: 10.1021/nl050366f
– volume: 22
  start-page: 751
  year: 2004
  ident: nl060530eb00016/nl060530eb00016_1
  publication-title: J. Vac. Sci. Technol., A
  doi: 10.1116/1.1689301
– volume: 374
  start-page: 53
  year: 2003
  ident: nl060530eb00017/nl060530eb00017_1
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(03)00687-0
– volume: 94
  start-page: 247401
  year: 2005
  ident: nl060530eb00021/nl060530eb00021_1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.94.247401
– volume: 87
  start-page: 211914
  year: 2005
  ident: nl060530eb00005/nl060530eb00005_1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2136435
– volume: 86
  start-page: 123116
  year: 2005
  ident: nl060530eb00011/nl060530eb00011_1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1894609
– volume: 301
  start-page: 1356
  year: 2003
  ident: nl060530eb00009/nl060530eb00009_1
  publication-title: Science
  doi: 10.1126/science.1087118
– volume-title: Process
  year: 2004
  ident: nl060530eb00020/nl060530eb00020_1
– volume: 86
  start-page: 053109
  year: 2005
  ident: nl060530eb00014/nl060530eb00014_1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1857081
– volume: 93
  start-page: 027401
  year: 2004
  ident: nl060530eb00010/nl060530eb00010_1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.027401
– volume: 5
  start-page: 2313
  year: 2005
  ident: nl060530eb00012/nl060530eb00012_1
  publication-title: Nano Lett.
  doi: 10.1021/nl051775e
– volume: 297
  start-page: 596
  year: 2002
  ident: nl060530eb00002/nl060530eb00002_1
  publication-title: Science
  doi: 10.1126/science.1072631
– volume: 49
  start-page: 5643
  year: 1994
  ident: nl060530eb00026/nl060530eb00026_1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.49.5643
– volume: 90
  start-page: 217401
  year: 2003
  ident: nl060530eb00003/nl060530eb00003_1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.90.217401
SSID ssj0009350
Score 2.3038778
Snippet Single-walled carbon nanotubes (SWNTs) suspended in air over trenches are imaged using their intrinsic near-infrared (NIR) photoluminescence (1.0−1.6 μm)....
Single-walled carbon nanotubes (SWNTs) suspended in air over trenches are imaged using their intrinsic near-infrared (NIR) photoluminescence (1.0-1.6 microm)....
SourceID proquest
pubmed
pascalfrancis
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1603
SubjectTerms Condensed matter: electronic structure, electrical, magnetic, and optical properties
Cross-disciplinary physics: materials science; rheology
Electron and ion emission by liquids and solids; impact phenomena
Exact sciences and technology
Field emission, ionization, evaporation, and desorption
Light
Luminescent Measurements - methods
Materials science
Materials Testing - methods
Microscopy, Fluorescence - methods
Nanoscale materials and structures: fabrication and characterization
Nanotechnology - methods
Nanotubes
Nanotubes, Carbon - analysis
Nanotubes, Carbon - chemistry
Nanotubes, Carbon - radiation effects
Nanotubes, Carbon - ultrastructure
Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation
Photoluminescence
Physics
Spectrometry, Fluorescence - methods
Title Photoluminescence Imaging of Suspended Single-Walled Carbon Nanotubes
URI http://dx.doi.org/10.1021/nl060530e
https://www.ncbi.nlm.nih.gov/pubmed/16895343
https://www.proquest.com/docview/68720992
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhR1db9Mw8DTGCwgBgwHlo4vYHnhJSWzHsR9RaVWQQEjdpL1F_tQkSlItyQu_nnOSrpu2DikPiXWW4vu273wHcMJwS4G8kcY5QsTM6izWJJEx6mNubWqpycJt5B8_-eKMfT_PzvfgeEcEn6Sfy1WCLjdN3AN4SDgKb_B_psttZV3atWFFycV9kBRsUz7o-tRgekx9w_Q8WasaseD79hW7_cvOzsyfwdfNbZ0-veT3pG30xPy9XbzxviU8h6eDnxl96RnjAPZc-QIeX6s--BJmvy6qJiinkPlugoRH3_50TYuiykfLtu7a49poiSMrF4cjd_yaqktdlRFq5apptasP4Ww-O50u4qGrQqxYIprYU574TBkvuPNOeS6N5MoI4Si-ES1twhyi2Umf5tYIiyoRn1x6lvvcpPQV7JdV6d5AhMJPjGKE8cSw3AqtMqOM9mjhvDeejGCMaC8GqaiLLuBN0uIKHyP4tKFIYYaa5KE1xuou0I9XoOu-EMddQOMbZN1CioRIdEZGcLShc4FyFIIjqnRVWxfIWeEWMf7z657827lcyIwy-vZ_q3kHj_oDmpAe-B72m8vWfUCXpdHjjmX_AY6Z5V0
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8QwFA4uBxVxX8ZlLOLBS7VLmiZHGZRxRRgFbyUrgmMrtr34631JO46KotBDW15Llrdl-z6EDjAMKUA3Qj8FCR8rkfgiCpgP_pgoFapYJvY08vUN6d_ji4fkoYXJsWdhoBAl_Kl0i_hjdIHwOB8GkHnHgZ5E05CERFabT3qDMcBu7NhYwYBhOMQoHqEIff7URiBZfolA8y-8hMYwDYvF72mmCzdniw1vkSuo22XydFRX4ki-fcNw_F9NltBCm3V6J42aLKMJna-guU9YhKvo9PaxqKyrsvvgpbV37_zZURh5hfEGdenIcpU3gDdD7dsJeHjq8VdR5B746KKqhS7X0P3Z6V2v77ccCz7HAa18E5PAJFwaSrTR3BAmGeGSUh3DXSSYCrAGj6mZCVMlqQIHCVfKDE5NKsN4HU3lRa43kQeuIJIcR5gEEqeKCp5ILoWBeGeMNFEHdaE5stZGyswtf0dh9tEeHXQ46phMtgjllihj-JPo_ofoSwPL8ZNQ90vvjiVpEDFITTpob9TdGViVXSrhuS7qMiM0tWeKocwbjRaMvyWUJTGOt_6qzR6a6d9dX2VX5zeX22i2mbqxGwd30FT1WutdSGYq0XVa_A6oCe2-
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT9wwFH5ikSpQ1dKWZWgZIsShl0AWx7GPaMqIrRRpQOIWeRUSQzIiyaW_nuckMwOIqkg5JNZz5OVt9rO_B7BPcEmBvBH6KVL4RMvEl1HAfdTHVOtQxypxt5F_X9KTG3J2m9x2C0V3FwYbUeKfyiaI76R6om2HMBAe5uMAve84MIuw7MJ1jqOPBqM5yG7cZGRFIcYlEWdkiiT0vKqzQqp8YYU-TkSJA2LbTBb_djUbkzP8DH9mjW1Omtwf1JU8UH9f4Ti-vzdr8KnzPr2jll2-wILJv8LqM0zCb3B8dVdUTmW58_DKyb13-tCkMvIK643qskmaq70RloyN7zbi8WsgHmWRe6iri6qWplyHm-Hx9eDE73It-IIErPJtTAObCGUZNdYIS7niVCjGTIxvkeQ6IAY1p-E2TLViGhUlPim3JLWpCuMNWMqL3GyBhyohUoJEhAaKpJpJkSihpEW7Z62yUQ_6OCRZJytl1oTBozCbjUcPfk4nJ1MdUrlLmDF-i3RvRjpp4TneIuq_mOE5JQsiji5KD3anU56hdLmQichNUZcZZam7W4xt3mw5YV6XMp7EJN7-X2924cPVr2F2cXp5_h1W2h0cd37wByxVj7XZQZ-mkv2GkZ8AdMHwQQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photoluminescence+imaging+of+suspended+single-walled+carbon+nanotubes&rft.jtitle=Nano+letters&rft.au=LEFEBVRE%2C+Jacques&rft.au=AUSTING%2C+David+G&rft.au=BOND%2C+Jeffery&rft.au=FINNIE%2C+Paul&rft.date=2006-08-01&rft.pub=American+Chemical+Society&rft.issn=1530-6984&rft.volume=6&rft.issue=8&rft.spage=1603&rft.epage=1608&rft_id=info:doi/10.1021%2Fnl060530e&rft.externalDBID=n%2Fa&rft.externalDocID=18029426
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon