Photoluminescence Imaging of Suspended Single-Walled Carbon Nanotubes

Single-walled carbon nanotubes (SWNTs) suspended in air over trenches are imaged using their intrinsic near-infrared (NIR) photoluminescence (1.0−1.6 μm). Far-field emission from extended suspended lengths (∼50 μm) is both spatially and spectrally resolved, and SWNTs are classified based on the spat...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 6; no. 8; pp. 1603 - 1608
Main Authors Lefebvre, Jacques, Austing, David G, Bond, Jeffery, Finnie, Paul
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 01.08.2006
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Single-walled carbon nanotubes (SWNTs) suspended in air over trenches are imaged using their intrinsic near-infrared (NIR) photoluminescence (1.0−1.6 μm). Far-field emission from extended suspended lengths (∼50 μm) is both spatially and spectrally resolved, and SWNTs are classified based on the spatial uniformity of their emission intensity and emission wavelength. In a few cases, emission assigned to different (n,m) species is observed along the same suspended segment. Most SWNTs imaged on millisecond time scales show steady emission, but a few fluctuate and suffer a reduction of intensity. The quantum efficiency is dramatically higher than that in previous reports and is estimated at 7%, a value that is precise but subject to corrections because of assumptions about absorption and coherence.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1530-6984
1530-6992
DOI:10.1021/nl060530e