Molecular Mechanism of Viscosity Sensitivity in BODIPY Rotors and Application to Motion-Based Fluorescent Sensors
Viscosity in the intracellular microenvironment shows a significant difference in various organelles and is closely related to cellular processes. Such microviscosity in live cells is often mapped and quantified with fluorescent molecular rotors. To enable the rational design of viscosity-sensitive...
Saved in:
Published in | ACS sensors Vol. 5; no. 3; pp. 731 - 739 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
27.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Viscosity in the intracellular microenvironment shows a significant difference in various organelles and is closely related to cellular processes. Such microviscosity in live cells is often mapped and quantified with fluorescent molecular rotors. To enable the rational design of viscosity-sensitive molecular rotors, it is critical to understand their working mechanisms. Herein, we systematically synthesized and investigated two sets of BODIPY-based molecular rotors to study the relationship between intramolecular motions and viscosity sensitivity. Through experimental and computational studies, two conformations (i.e., the planar and butterfly conformations) are found to commonly exist in BODIPY rotors. We demonstrate that the transformation energy barrier from the planar conformation to the butterfly conformation is strongly affected by the molecular structures of BODIPY rotors and plays a critical role in viscosity sensitivity. These findings enable rational structure modifications of BODIPY molecular rotors for highly effective protein detection and recognition. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2379-3694 2379-3694 |
DOI: | 10.1021/acssensors.9b01951 |