Molecular Packing and Arrangement Govern the Photo-Oxidative Stability of Organic Photovoltaic Materials

For long-term performance, chemically robust materials are desired for organic solar cells (OSCs). Illuminating neat films of OSC materials in air and tracking the rate of absorption loss, or photobleaching, can quickly screen a material’s photochemical stability. In this report, we photobleach neat...

Full description

Saved in:
Bibliographic Details
Published inChemistry of materials Vol. 27; no. 18; pp. 6345 - 6353
Main Authors Mateker, William R, Heumueller, Thomas, Cheacharoen, Rongrong, Sachs-Quintana, I. T, McGehee, Michael D, Warnan, Julien, Beaujuge, Pierre M, Liu, Xiaofeng, Bazan, Guillermo C
Format Journal Article
LanguageEnglish
Published American Chemical Society 22.09.2015
Online AccessGet full text

Cover

Loading…
More Information
Summary:For long-term performance, chemically robust materials are desired for organic solar cells (OSCs). Illuminating neat films of OSC materials in air and tracking the rate of absorption loss, or photobleaching, can quickly screen a material’s photochemical stability. In this report, we photobleach neat films of OSC materials including polymers, solution-processed oligomers, solution-processed small molecules, and vacuum-deposited small molecules. Across the materials we test, we observe photobleaching rates that span 7 orders of magnitude. Furthermore, we find that the film morphology of any particular material impacts the observed photobleaching rate and that amorphous films photobleach faster than crystalline ones. In an extreme case, films of amorphous rubrene photobleach at a rate 2500 times faster than polycrystalline films. When we compare density to photobleaching rate, we find that stability increases with density. We also investigate the relationship between backbone planarity and chemical reactivity. The polymer PBDTTPD is more photostable than its more twisted and less-ordered furan derivative, PBDFTPD. Finally, we relate our work to what is known about the chemical stability of structural polymers, organic pigments, and organic light-emitting diode materials. For the highest chemical stability, planar materials that form dense, crystalline film morphologies should be designed for OSCs.
ISSN:0897-4756
1520-5002
DOI:10.1021/acs.chemmater.5b02341