Intrinsically Photopolymerizable Dynamic Polymers Derived from a Natural Small Molecule
Developing photopolymerizable polymeric materials offers many opportunities to process materials in a remote and controllable manner. However, most photopolymerizable technologies require the external introduction of photoabsorbing units, whereas designing intrinsically photopolymerizable polymers i...
Saved in:
Published in | ACS applied materials & interfaces Vol. 13; no. 37; pp. 44860 - 44867 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
22.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Developing photopolymerizable polymeric materials offers many opportunities to process materials in a remote and controllable manner. However, most photopolymerizable technologies require the external introduction of photoabsorbing units, whereas designing intrinsically photopolymerizable polymers is still highly challenging. Here, we report that a natural small-molecule disulfide, thioctic acid, can be directly transformed into a poly(disulfides) network under the irradiation of visible light without any external additives. The resulting polymer network exhibits optical transparency, mechanical stretchability and toughness, ambient self-healing ability, and especially strong adhesive ability to different surfaces. The dynamic covalent backbones of the poly(disulfides) endow the depolymerization ability to recycle the material in a closed-loop manner. We foresee that this facile and robust photopolymerization system is of great promise toward low-cost and high-performance photocuring coatings and adhesives. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1944-8244 1944-8252 1944-8252 |
DOI: | 10.1021/acsami.1c11679 |