Comparison of the Effects of Extracellular and Intracellular Organic Matter Extracted From Microcystis aeruginosa on Ultrafiltration Membrane Fouling: Dynamics and Mechanisms

Algae organic matter (AOM), including intracellular organic matter (IOM) and extracellular organic matter (EOM), are major membrane foulants in the treatment of algae-polluted water. In this study, the effects of EOM and IOM (at dissolved organic concentrations of 8 mg/L) on the fouling of a poly­(e...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 48; no. 24; pp. 14549 - 14557
Main Authors Li, Lei, Wang, Zimeng, Rietveld, Luuk C, Gao, Naiyun, Hu, Jingyi, Yin, Daqiang, Yu, Shuili
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 16.12.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Algae organic matter (AOM), including intracellular organic matter (IOM) and extracellular organic matter (EOM), are major membrane foulants in the treatment of algae-polluted water. In this study, the effects of EOM and IOM (at dissolved organic concentrations of 8 mg/L) on the fouling of a poly­(ether sulfone) ultrafiltration (UF) membrane were investigated using a dead-end down-flow UF unit. Changes in the membrane pore geometry and the interaction energy between the membrane and foulants were analyzed based on the extended Derjaguin–Landau–Verwey–Overbeek (XDLVO) theory. The data (relative standard deviation within 10%) showed that UF was able to retain 57% and 46% of IOM and EOM respectively, while the corresponding membrane fluxes rapidly reduced to 28% and 33% of their respective initial values after a specific filtration volume of only 3.75 mL/cm2. The fouling model implied that cake formation was the major mechanism. Specifically, IOM foulant had a much greater free energy of cohesion (−59.08 mJ/m2) than EOM foulant (3.2 mJ/m2), leading to the formation of a compacted cake layer on the membrane surface. In contrast, small molecules of hydrophobic EOM tended to be adsorbed into the membrane pores, leading to significant reduction of the pore size and membrane flux. Therefore, the overall fouling rates caused by EOM and IOM were comparable when both of the above-mentioned mechanisms were considered.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0013-936X
1520-5851
DOI:10.1021/es5035365