NHC-CDI Betaine Adducts and Their Cationic Derivatives as Catalyst Precursors for Dichloromethane Valorization

Zwitterionic adducts of N-heterocyclic carbene and carbodiimide (NHC-CDI) are an emerging class of organic compounds with promising properties for applications in various fields. Herein, we report the use of the ICyCDI­(p-Tol) betaine adduct (1a) and its cationic derivatives 2a and 3a as catalyst pr...

Full description

Saved in:
Bibliographic Details
Published inJournal of organic chemistry Vol. 86; no. 23; pp. 16725 - 16735
Main Authors Sánchez-Roa, David, Mosquera, Marta E. G, Cámpora, Juan
Format Journal Article
LanguageEnglish
Published WASHINGTON American Chemical Society 03.12.2021
Amer Chemical Soc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Zwitterionic adducts of N-heterocyclic carbene and carbodiimide (NHC-CDI) are an emerging class of organic compounds with promising properties for applications in various fields. Herein, we report the use of the ICyCDI­(p-Tol) betaine adduct (1a) and its cationic derivatives 2a and 3a as catalyst precursors for the dichloromethane valorization via transformation into high added value products CH2Z2 (Z = OR, SR or NR2). This process implies selective chloride substitution of dichloromethane by a range of nucleophiles Na+Z– (preformed or generated in situ from HZ and an inorganic base) to yield formaldehyde-derived acetals, dithioacetals, or aminals with full selectivity. The reactions are conducted in a multigram-scale under very mild conditions, using dichloromethane both as a reagent and solvent, and very low catalyst loading (0.01 mol %). The CH2Z2 derivatives were isolated in quantitative yields after filtration and evaporation, which facilitates recycling the dichloromethane excess. Mechanistic studies for the synthesis of methylal CH2(OMe)2 rule out organocatalysis as being responsible for the CH2 transfer, and a phase-transfer catalysis mechanism is proposed instead. Furthermore, we observed that 1a and 2a react with NaOMe to form unusual isoureate ethers, which are the actual phase-transfer catalysts, with a strong preference for sodium over other alkali metal nucleophiles.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-3263
1520-6904
DOI:10.1021/acs.joc.1c01971