High-Precision Atomic Charge Prediction for Protein Systems Using Fragment Molecular Orbital Calculation and Machine Learning
Here, we have constructed neural network-based models that predict atomic partial charges with high accuracy at low computational cost. The models were trained using high-quality data acquired from quantum mechanics calculations using the fragment molecular orbital method. We have succeeded in obtai...
Saved in:
Published in | Journal of chemical information and modeling Vol. 60; no. 7; pp. 3361 - 3368 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
27.07.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Here, we have constructed neural network-based models that predict atomic partial charges with high accuracy at low computational cost. The models were trained using high-quality data acquired from quantum mechanics calculations using the fragment molecular orbital method. We have succeeded in obtaining highly accurate atomic partial charges for three representative molecular systems of proteins, including one large biomolecule (approx. 2000 atoms). The novelty of our approach is the ability to take into account the electronic polarization in the system, which is a system-dependent phenomenon, being important in the field of drug design. Our high-precision models are useful for the prediction of atomic partial charges and expected to be widely applicable in structure-based drug designs such as structural optimization, high-speed and high-precision docking, and molecular dynamics calculations. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1549-9596 1549-960X |
DOI: | 10.1021/acs.jcim.0c00273 |