Combined Density Functional and Algebraic-Diagrammatic Construction Approach for Accurate Excitation Energies and Transition Moments

A composite of time-dependent density functional theory (TDDFT) and the second-order algebraic-diagrammatic construction [ADC(2)] approach is presented for efficient calculation of spectral properties of molecules. Our method can be regarded as a new excited-state double-hybrid (DH) approach or a dr...

Full description

Saved in:
Bibliographic Details
Published inJournal of chemical theory and computation Vol. 15; no. 8; pp. 4440 - 4453
Main Authors Mester, Dávid, Kállay, Mihály
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 13.08.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A composite of time-dependent density functional theory (TDDFT) and the second-order algebraic-diagrammatic construction [ADC(2)] approach is presented for efficient calculation of spectral properties of molecules. Our method can be regarded as a new excited-state double-hybrid (DH) approach or a dressed TDDFT scheme, but it can also be interpreted as an empirically tuned ADC(2) model. Several combinations of exchange–correlation functionals and spin-scaling schemes are explored. Our best-performing method includes the Perdew, Burke, and Ernzerhof exchange and Perdew’s 1986 correlation functional and employs the scaled-opposite-spin approximation for the higher-order terms. The computation time of the new method scales as the fourth power of the system size, and an efficient cost-reduction approach is also presented, which further speeds up the calculations. Our benchmark calculations show that the proposed model outperforms not only the existing DH approaches and ADC(2) variants but also the considerably more expensive coupled-cluster methods.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1549-9618
1549-9626
DOI:10.1021/acs.jctc.9b00391