Identification of NAE Inhibitors Exhibiting Potent Activity in Leukemia Cells: Exploring the Structural Determinants of NAE Specificity
MLN4924 is a selective inhibitor of the NEDD8-activating enzyme (NAE) and has advanced into clinical trials for the treatment of both solid and hematological malignancies. In contrast, the structurally similar compound 1 (developed by Millennium: The Takeda Oncology Company) is a pan inhibitor of th...
Saved in:
Published in | ACS medicinal chemistry letters Vol. 2; no. 8; pp. 577 - 582 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
11.08.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | MLN4924 is a selective inhibitor of the NEDD8-activating enzyme (NAE) and has advanced into clinical trials for the treatment of both solid and hematological malignancies. In contrast, the structurally similar compound 1 (developed by Millennium: The Takeda Oncology Company) is a pan inhibitor of the E1 enzymes NAE, ubiquitin activating enzyme (UAE), and SUMO-activating enzyme (SAE) and is currently viewed as unsuitable for clinical use given its broad spectrum of E1 inhibition. Here, we sought to understand the determinants of NAE selectivity. A series of compound 1 analogues were synthesized through iterative functionalization of the purine C6 position and evaluated for NAE specificity. Optimal NAE specificity was achieved through substitution with primary N-alkyl groups, while bulky or secondary N-alkyl substituents were poorly tolerated. When assessed in vitro, inhibitors reduced the growth and viability of malignant K562 leukemia cells. Through this study, we have successfully identified a series of sub-10 nM NAE-specific inhibitors and thereby highlighted the functionalities that promote NAE selectivity. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1948-5875 1948-5875 |
DOI: | 10.1021/ml2000615 |