Elastoplastic Deformation Characteristics of Gravelly Soils
AbstractThis study explores the elastoplastic deformational behavior of gravelly soils. A series of drained triaxial tests with controlled stress paths [conventional triaxial compression (CTC) and conventional triaxial extension (CTE)] were conducted using large specimens composed of gravelly soils....
Saved in:
Published in | Journal of geotechnical and geoenvironmental engineering Vol. 139; no. 6; pp. 947 - 955 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Reston, VA
American Society of Civil Engineers
01.06.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | AbstractThis study explores the elastoplastic deformational behavior of gravelly soils. A series of drained triaxial tests with controlled stress paths [conventional triaxial compression (CTC) and conventional triaxial extension (CTE)] were conducted using large specimens composed of gravelly soils. Experimental results reveal that the elastic and plastic deformation of gravelly soils exhibits the following characteristics: (1) the elastic shear modulus stiffens under increase of hydrostatic loading; (2) during the CTC tests, plastic deformation occurs before the failure state, and the influence of confining pressure on the plastic strain is insignificant; (3) through the CTE path, the shear strain dominates the plastic deformation; (4) based on the distribution of plastic flows, the gravelly soils follow the nonassociated flow rule; and (5) this study proposes a possible geometry of plastic potential surface for gravelly soil, which includes two parts: an approximately horizontal line and an elliptic surface in the p−J2 plane. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1090-0241 1943-5606 |
DOI: | 10.1061/(ASCE)GT.1943-5606.0000827 |