Arsenic Redox Changes by Microbially and Chemically Formed Semiquinone Radicals and Hydroquinones in a Humic Substance Model Quinone

Arsenic is a redox-active metalloid whose toxicity and mobility strongly depends on its oxidation state, with arsenite (As(III)) being more toxic and mobile than arsenate (As(V)). Humic substances (HS) are also redox-active and can potentially react with arsenic and change its redox state. In this s...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 43; no. 10; pp. 3639 - 3645
Main Authors Jiang, Jie, Bauer, Iris, Paul, Andrea, Kappler, Andreas
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 15.05.2009
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Arsenic is a redox-active metalloid whose toxicity and mobility strongly depends on its oxidation state, with arsenite (As(III)) being more toxic and mobile than arsenate (As(V)). Humic substances (HS) are also redox-active and can potentially react with arsenic and change its redox state. In this study we show that semiquinone radicals produced during microbial or chemical reduction of a HS model quinone (AQDS, 9,10-anthraquinone-2,6-disulfonic acid) are strong oxidants. They oxidize arsenite to arsenate, thus decreasing As toxicity and mobility. This reaction depends strongly on pH with more arsenite (up to 67.3%) being oxidized at pH 11 compared to pH 7 (12.6% oxidation) and pH 3 (0.5% oxidation). In addition to As(III) oxidation by semiquinone radicals, hydroquinones that were also produced during quinone reduction reduced As(V) to As(III) at neutral and acidic pH values (less than 12%) but not at alkaline pH. In order to understand redox reactions between arsenite/arsenate and reduced/oxidized HS, we quantified the radical content in reduced quinone solutions and constructed E h-pH diagrams that explain the observed redox reactions. The results from this study can be used to better predict the fate of arsenic in the environment and potentially explain the occurrence of oxidized As(V) in anoxic environments.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0013-936X
1520-5851
DOI:10.1021/es803112a