Study of Microscopic and Macroscopic Displacement Behaviors of Polymer Solution in Water-Wet and Oil-Wet Media

Performance of a polymer flood process requires the knowledge of rheological behavior of the polymer solution and reservoir properties such as rock wettability. To provide a better understanding of effects of polymer chemistry and wettability on the performance of a polymer flood process, a comprehe...

Full description

Saved in:
Bibliographic Details
Published inTransport in porous media Vol. 89; no. 1; pp. 97 - 120
Main Authors Emami Meybodi, Hamid, Kharrat, Riyaz, Wang, Xiaoqi
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.08.2011
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Performance of a polymer flood process requires the knowledge of rheological behavior of the polymer solution and reservoir properties such as rock wettability. To provide a better understanding of effects of polymer chemistry and wettability on the performance of a polymer flood process, a comprehensive experimental study was conducted using a two-dimensional glass micromodel. A series of water and polymer flood processes were carried out at different polymer molecular weights, degrees of polymer hydrolysis, and polymer concentrations in both water-wet and oil-wet systems. Image processing technique was applied to analyze and compare microscopic and macroscopic displacement behaviors of polymer solution in each experiment. From micro-scale observations, the configuration of connate water film, polymer solution trapping, flow of continuous and discontinuous strings of polymer solution, piston-type displacement of oil, snap-off of polymer solution, distorted flow of polymer solution, emulsion formation, and microscopic pore-to-pore sweep of oil phase were observed and analyzed in the strongly oil-wet and water-wet media. Rheological experiments showed that a higher polymer molecular weight, degree of hydrolysis, and concentration result in a higher apparent viscosity for polymer solution and lower oil–polymer viscosity ratio. It is also shown that these parameters have different impacts on the oil recovery in different wettabilities. Moreover, a water-wet medium generally had higher recovery in contrast with an oil-wet medium. This experimental study illustrates the successful application of glass micromodel techniques for studying enhanced oil recovery (EOR) processes in five-spot pattern and provides a useful reference for understanding the displacement behaviors in a typical polymer flood process.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0169-3913
1573-1634
DOI:10.1007/s11242-011-9754-5