Injectable Hydrogel with Slow Degradability Composed of Gelatin and Hyaluronic Acid Cross-Linked by Schiff’s Base Formation
We developed an injectable gelatin/hyaluronic acid hydrogel with slow degradability, which consisted of carbohydrazide-modified gelatin (Gel-CDH) and hyaluronic acid monoaldehyde (HA-mCHO). Gel-CDH/HA-mCHO hydrogels were degraded much more slowly in phosphate-buffered saline than the other Schiff’s...
Saved in:
Published in | Biomacromolecules Vol. 19; no. 2; pp. 288 - 297 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
12.02.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We developed an injectable gelatin/hyaluronic acid hydrogel with slow degradability, which consisted of carbohydrazide-modified gelatin (Gel-CDH) and hyaluronic acid monoaldehyde (HA-mCHO). Gel-CDH/HA-mCHO hydrogels were degraded much more slowly in phosphate-buffered saline than the other Schiff’s base cross-linked gelatin/hyaluronic acid hydrogels that were comprised of native gelatin, adipic acid dihydrazide-modified gelatin, or hyaluronic acid dialdehyde because of stable Schiff’s base formation between aldehyde and carbohydrazide groups, and suppression of ring-opening oxidation by monoaldehyde modification. This prolonged degradation would be suitable for inducing angiogenesis. Therefore, the Gel-CDH/HA-mCHO hydrogels were sufficiently stable during the angiogenesis process. In addition, the hydrogel had a pore size of 15–55 μm and a shear storage modulus of 0.1–1 kPa, which were appropriate for scaffold application. Ex vivo rat aortic-ring assay demonstrated the concentration dependency of microvascular extension in the Gel-CDH/HA-mCHO hydrogel. These results demonstrated the potential usefulness of Gel-CDH/HA-mCHO hydrogel for tissue-engineering scaffolds. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1525-7797 1526-4602 1526-4602 |
DOI: | 10.1021/acs.biomac.7b01133 |