Conductive Hydrogen Sulfide-Releasing Hydrogel Encapsulating ADSCs for Myocardial Infarction Treatment

Hydrogen sulfide (H2S) exhibits extensive protective actions in cardiovascular systems, such as anti-inflammatory and stimulating angiogenesis, but its therapeutic potential is severely discounted by the short half-life and the poorly controlled releasing behavior. Herein, we developed a macromolecu...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 11; no. 16; pp. 14619 - 14629
Main Authors Liang, Wei, Chen, Jingrui, Li, Lingyan, Li, Min, Wei, Xiaojuan, Tan, Baoyu, Shang, Yingying, Fan, Guanwei, Wang, Wei, Liu, Wenguang
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 24.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Hydrogen sulfide (H2S) exhibits extensive protective actions in cardiovascular systems, such as anti-inflammatory and stimulating angiogenesis, but its therapeutic potential is severely discounted by the short half-life and the poorly controlled releasing behavior. Herein, we developed a macromolecular H2S prodrug by grafting 2-aminopyridine-5-thiocarboxamide (a small-molecule H2S donor) on partially oxidized alginate (ALG-CHO) to mimic the slow and continuous release of endogenous H2S. In addition, tetraaniline (a conductive oligomer) and adipose-derived stem cells (ADSCs) were introduced to form a stem cell-loaded conductive H2S-releasing hydrogel through the Schiff base reaction between ALG-CHO and gelatin. The hydrogel exhibited adhesive property to ensure a stable anchoring to the wet and beating hearts. After myocardial injection, longer ADSCs retention period and elevated sulfide concentration in rat myocardium were demonstrated, accompanied by upregulation of cardiac-related mRNA (Cx43, α-SMA, and cTnT) and angiogenic factors (VEGFA and Ang-1) and downregulation of inflammatory factors (tumor necrosis factor-α). Echocardiography and histological analysis strongly demonstrated an increase in the ejection fraction value and smaller infarction size, suggesting a remarkable improvement of the cardiac functions of Sprague-Dawley rats. The ADSC-loaded conductive hydrogen sulfide-releasing hydrogel dramatically promoted the therapeutic effects, offering a promising therapeutic strategy for treating myocardial infarction.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.9b01886