Visible-Light Copper Nanocluster Catalysis for the C–N Coupling of Aryl Chlorides at Room Temperature
Activation of aryl chlorides in cross-coupling reactions is a long-standing challenge in organic synthesis that is of great interest to industry. Ultrasmall (<3 nm), atomically precise nanoclusters (NCs) are considered one of the most promising catalysts due to their high surface area and unsatur...
Saved in:
Published in | Journal of the American Chemical Society Vol. 144; no. 27; pp. 12052 - 12061 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
13.07.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Activation of aryl chlorides in cross-coupling reactions is a long-standing challenge in organic synthesis that is of great interest to industry. Ultrasmall (<3 nm), atomically precise nanoclusters (NCs) are considered one of the most promising catalysts due to their high surface area and unsaturated active sites. Herein, we introduce a copper nanocluster-based catalyst, [Cu61(StBu)26S6Cl6H14] (Cu61NC) that enables C–N bond-forming reactions of aryl chlorides under visible-light irradiation at room temperature. A range of N-heterocyclic nucleophiles and electronically and sterically diverse aryl/hetero chlorides react in this new Cu61NC-catalyzed process to afford the C–N coupling products in good yields. Mechanistic studies indicate that a single-electron-transfer (SET) process between the photoexcited Cu61NC complex and aryl halide enables the C–N-arylation reaction. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0002-7863 1520-5126 1520-5126 |
DOI: | 10.1021/jacs.2c02218 |