Versatile (Bio)Functionalization of Bromo-Terminated Phosphonate-Modified Porous Aluminum Oxide

Porous aluminum oxide (PAO) is a nanoporous material used for various (bio)­technological applications, and tailoring its surface properties via covalent modification is a way to expand and refine its application. Specific and complex chemical modification of the PAO surface requires a stepwise appr...

Full description

Saved in:
Bibliographic Details
Published inLangmuir Vol. 31; no. 20; pp. 5633 - 5644
Main Authors Debrassi, Aline, Roeven, Esther, Thijssen, Selina, Scheres, Luc, de Vos, Willem M, Wennekes, Tom, Zuilhof, Han
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 26.05.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Porous aluminum oxide (PAO) is a nanoporous material used for various (bio)­technological applications, and tailoring its surface properties via covalent modification is a way to expand and refine its application. Specific and complex chemical modification of the PAO surface requires a stepwise approach in which a secondary reaction on a stable initial modification is necessary to achieve the desired terminal molecular architecture and reactivity. We here show that the straightforward initial modification of the bare PAO surface with bromo-terminated phosphonic acid allows for the subsequent preparation of PAO with a wide scope of terminal reactive groups, making it suitable for (bio)­functionalization. Starting from the initial bromo-terminated PAO, we prepared PAO surfaces presenting various terminal functional groups, such as azide, alkyne, alkene, thiol, isothiocyanate, and N-hydroxysuccinimide (NHS). We also show that this wide scope of easily accessible tailored reactive PAO surfaces can be used for subsequent modification with (bio)­molecules, including carbohydrate derivatives and fluorescently labeled proteins.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0743-7463
1520-5827
DOI:10.1021/acs.langmuir.5b00853