An Oxide Schottky Junction Artificial Optoelectronic Synapse
The rapid development of artificial intelligence techniques and future advanced robot systems sparks emergent demand on the accurate perception and understanding of the external environments via visual sensing systems that can co-locate the self-adaptive detecting, processing, and memorizing of opti...
Saved in:
Published in | ACS nano Vol. 13; no. 2; pp. 2634 - 2642 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
26.02.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The rapid development of artificial intelligence techniques and future advanced robot systems sparks emergent demand on the accurate perception and understanding of the external environments via visual sensing systems that can co-locate the self-adaptive detecting, processing, and memorizing of optical signals. In this contribution, a simple indium–tin oxide/Nb-doped SrTiO3 (ITO/Nb:SrTiO3) heterojunction artificial optoelectronic synapse is proposed and demonstrated. Through the light and electric field co-modulation of the Schottky barrier profile at the ITO/Nb:SrTiO3 interface, the oxide heterojunction device can respond to the entire visible light region in a neuromorphic manner, allowing synaptic paired-pulse facilitation, short/long-term memory, and “learning-experience” behavior for optical information manipulation. More importantly, the photoplasticity of the artificial synapse has been modulated by heterosynaptic means with a sub-1 V external voltage, not only enabling an optoelectronic analog of the mechanical aperture device showing adaptive and stable optical perception capability under different illuminating conditions but also making the artificial synapse suitable for the mimicry of interest-modulated human visual memories. |
---|---|
AbstractList | The rapid development of artificial intelligence techniques and future advanced robot systems sparks emergent demand on the accurate perception and understanding of the external environments via visual sensing systems that can co-locate the self-adaptive detecting, processing, and memorizing of optical signals. In this contribution, a simple indium-tin oxide/Nb-doped SrTiO3 (ITO/Nb:SrTiO3) heterojunction artificial optoelectronic synapse is proposed and demonstrated. Through the light and electric field co-modulation of the Schottky barrier profile at the ITO/Nb:SrTiO3 interface, the oxide heterojunction device can respond to the entire visible light region in a neuromorphic manner, allowing synaptic paired-pulse facilitation, short/long-term memory, and "learning-experience" behavior for optical information manipulation. More importantly, the photoplasticity of the artificial synapse has been modulated by heterosynaptic means with a sub-1 V external voltage, not only enabling an optoelectronic analog of the mechanical aperture device showing adaptive and stable optical perception capability under different illuminating conditions but also making the artificial synapse suitable for the mimicry of interest-modulated human visual memories.The rapid development of artificial intelligence techniques and future advanced robot systems sparks emergent demand on the accurate perception and understanding of the external environments via visual sensing systems that can co-locate the self-adaptive detecting, processing, and memorizing of optical signals. In this contribution, a simple indium-tin oxide/Nb-doped SrTiO3 (ITO/Nb:SrTiO3) heterojunction artificial optoelectronic synapse is proposed and demonstrated. Through the light and electric field co-modulation of the Schottky barrier profile at the ITO/Nb:SrTiO3 interface, the oxide heterojunction device can respond to the entire visible light region in a neuromorphic manner, allowing synaptic paired-pulse facilitation, short/long-term memory, and "learning-experience" behavior for optical information manipulation. More importantly, the photoplasticity of the artificial synapse has been modulated by heterosynaptic means with a sub-1 V external voltage, not only enabling an optoelectronic analog of the mechanical aperture device showing adaptive and stable optical perception capability under different illuminating conditions but also making the artificial synapse suitable for the mimicry of interest-modulated human visual memories. The rapid development of artificial intelligence techniques and future advanced robot systems sparks emergent demand on the accurate perception and understanding of the external environments via visual sensing systems that can co-locate the self-adaptive detecting, processing, and memorizing of optical signals. In this contribution, a simple indium–tin oxide/Nb-doped SrTiO3 (ITO/Nb:SrTiO3) heterojunction artificial optoelectronic synapse is proposed and demonstrated. Through the light and electric field co-modulation of the Schottky barrier profile at the ITO/Nb:SrTiO3 interface, the oxide heterojunction device can respond to the entire visible light region in a neuromorphic manner, allowing synaptic paired-pulse facilitation, short/long-term memory, and “learning-experience” behavior for optical information manipulation. More importantly, the photoplasticity of the artificial synapse has been modulated by heterosynaptic means with a sub-1 V external voltage, not only enabling an optoelectronic analog of the mechanical aperture device showing adaptive and stable optical perception capability under different illuminating conditions but also making the artificial synapse suitable for the mimicry of interest-modulated human visual memories. The rapid development of artificial intelligence techniques and future advanced robot systems sparks emergent demand on the accurate perception and understanding of the external environments via visual sensing systems that can co-locate the self-adaptive detecting, processing, and memorizing of optical signals. In this contribution, a simple indium-tin oxide/Nb-doped SrTiO (ITO/Nb:SrTiO ) heterojunction artificial optoelectronic synapse is proposed and demonstrated. Through the light and electric field co-modulation of the Schottky barrier profile at the ITO/Nb:SrTiO interface, the oxide heterojunction device can respond to the entire visible light region in a neuromorphic manner, allowing synaptic paired-pulse facilitation, short/long-term memory, and "learning-experience" behavior for optical information manipulation. More importantly, the photoplasticity of the artificial synapse has been modulated by heterosynaptic means with a sub-1 V external voltage, not only enabling an optoelectronic analog of the mechanical aperture device showing adaptive and stable optical perception capability under different illuminating conditions but also making the artificial synapse suitable for the mimicry of interest-modulated human visual memories. |
Author | Liu, Gang Hu, Chao Gong, Guodong Shang, Jie Gao, Shuang Xue, Wuhong Yang, Huali Chen, Qilai Yi, Xiaohui Li, Run-Wei |
AuthorAffiliation | CAS Key Laboratory of Magnetic Materials and Devices Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology |
AuthorAffiliation_xml | – name: Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences – name: Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology – name: CAS Key Laboratory of Magnetic Materials and Devices |
Author_xml | – sequence: 1 givenname: Shuang surname: Gao fullname: Gao, Shuang organization: Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences – sequence: 2 givenname: Gang surname: Liu fullname: Liu, Gang email: liug@nimte.ac.cn organization: Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences – sequence: 3 givenname: Huali surname: Yang fullname: Yang, Huali organization: Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences – sequence: 4 givenname: Chao surname: Hu fullname: Hu, Chao organization: Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences – sequence: 5 givenname: Qilai surname: Chen fullname: Chen, Qilai organization: Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences – sequence: 6 givenname: Guodong surname: Gong fullname: Gong, Guodong organization: Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences – sequence: 7 givenname: Wuhong surname: Xue fullname: Xue, Wuhong organization: Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences – sequence: 8 givenname: Xiaohui surname: Yi fullname: Yi, Xiaohui organization: Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences – sequence: 9 givenname: Jie surname: Shang fullname: Shang, Jie organization: Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences – sequence: 10 givenname: Run-Wei orcidid: 0000-0003-3879-9834 surname: Li fullname: Li, Run-Wei email: runweili@nimte.ac.cn organization: Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30730696$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kMtLAzEQxoNU7EPP3mSPgmyb1z4CXkrxSaGHKngL2WwWU7fJmmTB_vdu6daD0MMwA_N9w3y_MRgYaxQA1whOEcRoJqQ3wtgpKyAkFJ6BEWIkjWGefgz-5gQNwdj7DYRJlmfpBRgSmBGYsnQE7ucmWv3oUkVr-WlD-NpFr62RQVsTzV3QlZZa1NGqCVbVSgZnjZbRemdE49UlOK9E7dVV3yfg_fHhbfEcL1dPL4v5MhaEsRBTiZiA3b8FZhRniDFGBaGoLFkJEaYVSaqU5iiRWHUFUZ5XKKcwKStVEJKRCbg93G2c_W6VD3yrvVR1LYyyrecY5RnECe4YTMBNL22LrSp54_RWuB0_Ju4EyUEgnfXeqYpLHcQ-b3BC1xxBvifLe7K8J9v5Zv98x9OnHXcHR7fgG9s60zE6qf4FiZ-JiQ |
CitedBy_id | crossref_primary_10_1002_aelm_202200668 crossref_primary_10_1021_acsnano_0c08921 crossref_primary_10_1016_j_jallcom_2022_163873 crossref_primary_10_1016_j_mtchem_2021_100681 crossref_primary_10_1039_D5TC00591D crossref_primary_10_1002_advs_202409933 crossref_primary_10_1002_adfm_202425627 crossref_primary_10_1021_acsaelm_4c02275 crossref_primary_10_1021_acsami_4c09593 crossref_primary_10_1039_D1NA00152C crossref_primary_10_1002_adfm_202309531 crossref_primary_10_1109_LED_2021_3061948 crossref_primary_10_1002_adfm_202008259 crossref_primary_10_1063_5_0197199 crossref_primary_10_1002_aelm_202100014 crossref_primary_10_1039_D4TA05024J crossref_primary_10_1063_5_0071748 crossref_primary_10_1002_adma_202307393 crossref_primary_10_1016_j_nanoen_2020_104756 crossref_primary_10_1021_acsami_4c07732 crossref_primary_10_7498_aps_71_20220463 crossref_primary_10_1016_j_nanoen_2021_106654 crossref_primary_10_1016_j_nanoen_2023_108398 crossref_primary_10_1002_smll_202006662 crossref_primary_10_1002_anie_202213733 crossref_primary_10_1002_adfm_202212666 crossref_primary_10_1016_j_surfin_2024_104587 crossref_primary_10_1016_j_jmst_2021_11_082 crossref_primary_10_1016_j_sna_2024_115449 crossref_primary_10_1002_adfm_202407746 crossref_primary_10_1021_acsaelm_2c01665 crossref_primary_10_1002_adfm_202425635 crossref_primary_10_3390_nano14191573 crossref_primary_10_1002_adom_202201104 crossref_primary_10_7498_aps_71_20220226 crossref_primary_10_1002_aelm_202201068 crossref_primary_10_7498_aps_68_20191262 crossref_primary_10_1007_s40843_022_2318_9 crossref_primary_10_1002_adfm_202207290 crossref_primary_10_1007_s00339_020_03614_2 crossref_primary_10_1039_D0TC04250A crossref_primary_10_15187_adr_2022_08_35_3_95 crossref_primary_10_3390_nano11061361 crossref_primary_10_1002_adfm_202213874 crossref_primary_10_1016_j_chip_2022_100031 crossref_primary_10_1021_acs_nanolett_2c02675 crossref_primary_10_1126_sciadv_abc6389 crossref_primary_10_1021_acs_jpcc_3c06005 crossref_primary_10_1002_aisy_202000099 crossref_primary_10_1002_aisy_202200316 crossref_primary_10_1002_pssa_201900555 crossref_primary_10_1002_apxr_202400115 crossref_primary_10_1002_smm2_1246 crossref_primary_10_1016_j_apmt_2022_101728 crossref_primary_10_1038_s41467_023_42488_9 crossref_primary_10_1021_acsami_3c10366 crossref_primary_10_1063_5_0102231 crossref_primary_10_1021_acsaelm_1c01237 crossref_primary_10_3389_fnano_2022_954165 crossref_primary_10_7498_aps_71_20220350 crossref_primary_10_1002_adfm_202314660 crossref_primary_10_1039_D0NR04950F crossref_primary_10_1080_14686996_2023_2186689 crossref_primary_10_1109_JSEN_2023_3341617 crossref_primary_10_1088_1361_6463_ac7f66 crossref_primary_10_1021_acsami_1c13355 crossref_primary_10_1016_j_mtnano_2024_100480 crossref_primary_10_1002_aelm_201900765 crossref_primary_10_1007_s40820_024_01338_z crossref_primary_10_1039_C9TC06749C crossref_primary_10_1039_D1MH01061A crossref_primary_10_1002_aelm_202101003 crossref_primary_10_1038_s43246_024_00553_w crossref_primary_10_1016_j_sse_2020_107764 crossref_primary_10_1002_adom_202000153 crossref_primary_10_3390_nano14181501 crossref_primary_10_1021_acs_jpclett_2c03939 crossref_primary_10_1002_aisy_202200328 crossref_primary_10_1007_s40820_023_01116_3 crossref_primary_10_1039_D0NR02184A crossref_primary_10_1002_smtd_202401543 crossref_primary_10_1021_acsnano_0c06874 crossref_primary_10_1016_j_jallcom_2025_179053 crossref_primary_10_1038_s41528_022_00163_x crossref_primary_10_1002_aelm_201901044 crossref_primary_10_1021_acs_nanolett_4c00124 crossref_primary_10_1002_advs_202004208 crossref_primary_10_1021_acs_nanolett_0c00298 crossref_primary_10_1002_admt_202201125 crossref_primary_10_1002_aelm_202101235 crossref_primary_10_1364_PRJ_507178 crossref_primary_10_1016_j_cej_2024_152850 crossref_primary_10_1016_j_xcrp_2021_100507 crossref_primary_10_1021_acsami_1c03202 crossref_primary_10_1016_j_nanoen_2024_109733 crossref_primary_10_1109_LED_2022_3201948 crossref_primary_10_34133_research_0427 crossref_primary_10_1016_j_nanoen_2020_105014 crossref_primary_10_1016_j_apsusc_2022_156232 crossref_primary_10_1002_pi_6017 crossref_primary_10_1088_1674_1056_ab99b6 crossref_primary_10_1038_s41699_024_00458_9 crossref_primary_10_1002_smll_202005491 crossref_primary_10_1016_j_nanoen_2022_108072 crossref_primary_10_1002_aelm_202400482 crossref_primary_10_1002_adma_202208683 crossref_primary_10_1021_acsami_0c10851 crossref_primary_10_1002_aelm_201900858 crossref_primary_10_1002_inf2_12012 crossref_primary_10_1016_j_ceramint_2021_11_005 crossref_primary_10_1021_acsami_0c22604 crossref_primary_10_1088_1674_1056_acc7fa crossref_primary_10_1002_smm2_1154 crossref_primary_10_1002_adfm_202101201 crossref_primary_10_1186_s11671_024_04060_2 crossref_primary_10_1002_aelm_202101260 crossref_primary_10_1038_s41467_022_32790_3 crossref_primary_10_1021_acsami_4c08070 crossref_primary_10_1063_5_0087624 crossref_primary_10_1039_D4MH00064A crossref_primary_10_1021_acsami_4c02092 crossref_primary_10_1021_acs_nanolett_4c02447 crossref_primary_10_1016_j_nanoen_2023_108928 crossref_primary_10_1002_aelm_202400006 crossref_primary_10_1039_D1CC03060D crossref_primary_10_1021_jacs_2c13471 crossref_primary_10_1002_adfm_202302885 crossref_primary_10_1016_j_nanoen_2019_05_064 crossref_primary_10_1021_acsami_4c04398 crossref_primary_10_1002_adma_202309940 crossref_primary_10_1021_acsami_3c11495 crossref_primary_10_1002_adfm_202211467 crossref_primary_10_1021_acsphotonics_2c01583 crossref_primary_10_1002_advs_202105577 crossref_primary_10_1021_acs_jpclett_4c01980 crossref_primary_10_1016_j_chip_2024_100088 crossref_primary_10_1002_adma_202004207 crossref_primary_10_1002_aisy_202000107 crossref_primary_10_1002_adfm_202100807 crossref_primary_10_1002_adma_202310155 crossref_primary_10_1088_1674_1056_ad08a5 crossref_primary_10_1021_acsaelm_3c01266 crossref_primary_10_1002_smtd_202402151 crossref_primary_10_1021_acsnano_2c09747 crossref_primary_10_1063_5_0160599 crossref_primary_10_1002_adom_202101372 crossref_primary_10_1016_j_nanoen_2023_109102 crossref_primary_10_1038_s41598_020_62945_5 crossref_primary_10_1002_adma_202403150 crossref_primary_10_1002_aisy_202400968 crossref_primary_10_1002_adma_202407751 crossref_primary_10_1016_j_jallcom_2025_179771 crossref_primary_10_1088_2752_5724_acda4d crossref_primary_10_1002_aelm_201901363 crossref_primary_10_1016_j_orgel_2021_106390 crossref_primary_10_1039_D0TC01156H crossref_primary_10_1021_acsanm_3c00796 crossref_primary_10_1002_adpr_202400146 crossref_primary_10_1002_adma_202311472 crossref_primary_10_1002_aisy_202000119 crossref_primary_10_1002_smtd_202400779 crossref_primary_10_1063_5_0231484 crossref_primary_10_1002_admt_202200870 crossref_primary_10_1002_advs_202202019 crossref_primary_10_1002_adom_202402193 crossref_primary_10_1039_D1MH01433A crossref_primary_10_1364_PRJ_480057 crossref_primary_10_1063_5_0256082 crossref_primary_10_1002_adfm_202110976 crossref_primary_10_1038_s41928_023_00950_y crossref_primary_10_1002_aelm_202300135 crossref_primary_10_1002_pssr_201900082 crossref_primary_10_1021_acsami_2c01162 crossref_primary_10_1002_adma_201907826 crossref_primary_10_1021_acs_jpclett_2c00176 crossref_primary_10_1088_2634_4386_acd4e2 crossref_primary_10_1021_acsaelm_3c01808 crossref_primary_10_1002_adma_202411420 crossref_primary_10_1016_j_matdes_2022_111218 crossref_primary_10_1002_adfm_202107973 crossref_primary_10_1002_advs_202103494 crossref_primary_10_1016_j_vacuum_2021_110422 crossref_primary_10_1002_adfm_202309378 crossref_primary_10_1039_D4TC00371C crossref_primary_10_1039_D2RA02749F crossref_primary_10_1088_1361_6463_ad77df crossref_primary_10_1063_5_0194083 crossref_primary_10_1038_s41377_025_01743_y crossref_primary_10_3390_ma15103637 crossref_primary_10_1002_aisy_201900136 crossref_primary_10_1063_5_0092968 crossref_primary_10_1016_j_jallcom_2020_157593 crossref_primary_10_1016_j_carbon_2021_06_060 crossref_primary_10_1038_s41467_023_38608_0 crossref_primary_10_1002_smll_202007241 crossref_primary_10_1016_j_mtelec_2024_100099 crossref_primary_10_1007_s40843_021_2029_y crossref_primary_10_1088_1674_1056_ab75da crossref_primary_10_1063_1_5120352 crossref_primary_10_1063_5_0083465 crossref_primary_10_1002_aelm_202201226 crossref_primary_10_1088_1361_6528_ad22b1 crossref_primary_10_1016_j_orgel_2019_05_015 crossref_primary_10_1002_adfm_202302288 crossref_primary_10_1063_1_5109090 crossref_primary_10_1039_D0MH01037E crossref_primary_10_1016_j_jallcom_2023_171712 crossref_primary_10_1021_acs_nanolett_3c01853 crossref_primary_10_35848_1347_4065_adb162 crossref_primary_10_1002_smll_202309945 crossref_primary_10_1039_D2NH00532H crossref_primary_10_7498_aps_72_20230954 crossref_primary_10_1002_adfm_202002325 crossref_primary_10_1021_acsmaterialslett_2c00911 crossref_primary_10_1021_acs_nanolett_4c05764 crossref_primary_10_1002_adom_202201852 crossref_primary_10_1038_s41598_022_18821_5 crossref_primary_10_1021_acsami_4c11926 crossref_primary_10_1002_aisy_202000149 crossref_primary_10_1088_2752_5724_acc678 crossref_primary_10_1016_j_mtcomm_2023_107546 crossref_primary_10_1002_advs_202305679 crossref_primary_10_1038_s41377_024_01519_w crossref_primary_10_34133_2021_7131895 crossref_primary_10_1021_acsaelm_3c01462 crossref_primary_10_1021_acsaelm_4c01208 crossref_primary_10_1088_1674_1056_ad1c58 crossref_primary_10_1016_j_nanoen_2021_106471 crossref_primary_10_1021_acsphotonics_4c01535 crossref_primary_10_1088_0256_307X_39_6_068501 crossref_primary_10_1063_5_0033427 crossref_primary_10_1177_09506608251318108 crossref_primary_10_1103_PhysRevApplied_16_044049 crossref_primary_10_1109_LED_2023_3306348 crossref_primary_10_1039_D3TC01005H crossref_primary_10_1039_D3MH00775H crossref_primary_10_1002_adfm_202105345 crossref_primary_10_1007_s10854_022_08702_y crossref_primary_10_1016_j_ceramint_2022_04_143 crossref_primary_10_1063_5_0181090 crossref_primary_10_1002_adfm_202209091 crossref_primary_10_1002_aisy_202200298 crossref_primary_10_1002_inf2_12528 crossref_primary_10_1039_D0TC03907A crossref_primary_10_1016_j_snb_2021_130745 crossref_primary_10_1002_smll_202402273 crossref_primary_10_1007_s00339_024_07668_4 crossref_primary_10_1039_D0MH01730B crossref_primary_10_1039_D3NR00900A crossref_primary_10_1002_adfm_202409677 crossref_primary_10_1021_acs_nanolett_3c01076 crossref_primary_10_1021_acs_nanolett_2c01768 crossref_primary_10_1021_acsapm_2c00655 crossref_primary_10_1002_ange_202213733 crossref_primary_10_1021_acsaelm_2c00033 crossref_primary_10_1002_adma_202305857 crossref_primary_10_1016_j_apsusc_2023_157325 crossref_primary_10_3390_app10238358 crossref_primary_10_1007_s12274_022_4132_x crossref_primary_10_1039_D0MH00312C crossref_primary_10_1002_pssr_202000394 crossref_primary_10_1002_smll_202102820 crossref_primary_10_1002_lpor_202400319 crossref_primary_10_1007_s40820_021_00618_2 crossref_primary_10_1039_D0NR07297D crossref_primary_10_1021_acsami_1c23986 crossref_primary_10_1016_j_matchar_2021_111578 crossref_primary_10_1002_adfm_202005582 crossref_primary_10_1002_adma_202205459 crossref_primary_10_1039_D0TC05563H crossref_primary_10_1002_adma_202403444 crossref_primary_10_1063_5_0220524 crossref_primary_10_1016_j_nanoen_2020_104790 crossref_primary_10_1021_acsnano_9b07687 crossref_primary_10_1088_1674_4926_41_5_051205 crossref_primary_10_1002_aelm_202300863 crossref_primary_10_1016_j_scib_2022_05_008 crossref_primary_10_34133_2019_9490413 crossref_primary_10_1016_j_xcrp_2022_101037 crossref_primary_10_1021_acsaelm_5c00090 crossref_primary_10_1063_5_0191339 crossref_primary_10_7498_aps_71_20220308 crossref_primary_10_1016_j_apmt_2023_102032 crossref_primary_10_1002_adma_202002431 crossref_primary_10_1002_adma_202106881 crossref_primary_10_1088_1674_4926_24100025 crossref_primary_10_1063_5_0076672 crossref_primary_10_1002_adfm_202306173 crossref_primary_10_1016_j_carbon_2022_04_016 crossref_primary_10_1039_D2TC03800E crossref_primary_10_1039_D4NR00904E crossref_primary_10_1016_j_jmst_2024_02_007 crossref_primary_10_1021_acsnano_3c04113 crossref_primary_10_1002_aelm_202000950 crossref_primary_10_1002_smm2_1322 crossref_primary_10_1186_s43074_023_00082_8 crossref_primary_10_1016_j_nanoen_2024_109267 crossref_primary_10_1002_adma_202006469 crossref_primary_10_1002_smll_202309851 crossref_primary_10_1021_acssensors_3c00487 crossref_primary_10_1002_admi_202201558 crossref_primary_10_1021_acs_nanolett_0c03652 crossref_primary_10_3389_fphy_2022_839243 crossref_primary_10_1109_TED_2023_3312229 crossref_primary_10_1021_acsaelm_3c01549 crossref_primary_10_1002_adfm_202006773 crossref_primary_10_1088_1361_6463_ac12f9 crossref_primary_10_1103_PhysRevB_104_235308 crossref_primary_10_1002_adom_202303248 crossref_primary_10_1002_aelm_202400732 crossref_primary_10_1002_adma_202205679 crossref_primary_10_1002_adfm_202208807 crossref_primary_10_1016_j_nanoen_2021_106439 crossref_primary_10_1088_2058_8585_ac4bb2 crossref_primary_10_1007_s40820_022_00945_y crossref_primary_10_1021_acsami_9b13434 crossref_primary_10_1002_adma_202108979 crossref_primary_10_1039_D0NR08082A crossref_primary_10_1016_j_matdes_2023_112367 crossref_primary_10_1016_j_matdes_2023_112368 crossref_primary_10_1016_j_eng_2022_01_009 crossref_primary_10_1186_s11671_022_03744_x crossref_primary_10_1063_5_0220628 crossref_primary_10_1016_j_fmre_2022_06_019 crossref_primary_10_1002_adom_201900766 crossref_primary_10_1002_admi_201900471 crossref_primary_10_1002_adom_202100449 crossref_primary_10_1002_advs_202104632 crossref_primary_10_1002_sstr_202000029 crossref_primary_10_1002_advs_202304804 crossref_primary_10_1002_admt_202300449 crossref_primary_10_1002_adpr_202000185 crossref_primary_10_1002_adfm_202306272 crossref_primary_10_1016_j_electacta_2023_143512 crossref_primary_10_1002_adma_202208497 crossref_primary_10_1007_s12274_022_4122_z crossref_primary_10_1039_C9MH01923E crossref_primary_10_1021_acsaelm_4c01653 crossref_primary_10_1016_j_nanoen_2022_106987 crossref_primary_10_1002_adfm_201908901 crossref_primary_10_1002_advs_202500521 crossref_primary_10_1063_5_0168362 crossref_primary_10_1002_adfm_202306945 crossref_primary_10_1002_adom_202300089 crossref_primary_10_1021_acsaelm_3c01795 crossref_primary_10_1038_s41467_022_34230_8 crossref_primary_10_1186_s11671_023_03906_5 crossref_primary_10_1039_D3NR06521A crossref_primary_10_1002_aisy_202300350 crossref_primary_10_1021_acsami_4c14694 crossref_primary_10_1021_acs_nanolett_2c00599 crossref_primary_10_1021_acssuschemeng_3c05027 crossref_primary_10_1088_1674_1056_ab973f crossref_primary_10_1021_acs_chemrev_9b00730 crossref_primary_10_1063_5_0255395 |
Cites_doi | 10.1002/adma.201705400 10.1145/359576.359579 10.1021/acsnano.7b05762 10.1146/annurev.physiol.64.092501.114547 10.1038/nnano.2016.70 10.1021/acsami.8b01036 10.1063/1.365893 10.1016/j.materresbull.2012.04.106 10.1002/adfm.201304121 10.1016/j.nanoen.2018.08.018 10.1002/adma.201700212 10.1002/adfm.201704337 10.1002/aelm.201700032 10.1116/1.591472 10.1038/s41563-017-0001-5 10.1039/c3tc30575a 10.1103/PhysRevB.72.035215 10.1063/1.4804374 10.1039/C6NR00824K 10.1038/nature14441 10.1002/adma.201700951 10.1021/nn1005478 10.1126/science.1202992 10.1002/adma.201605242 10.1016/S0079-7421(08)60422-3 10.1364/OL.36.002032 10.1021/acs.chemrev.6b00127 10.1016/S1364-6613(02)00013-X 10.1039/C7TC02197F 10.1039/C7NR06138B 10.1002/adfm.201103148 10.1038/srep02482 10.1002/adma.201701772 10.1063/1.4901053 10.1021/nl904092h 10.1021/nn202983n 10.1002/adma.201403295 10.1007/s11571-018-9490-4 10.1088/0034-4885/59/9/003 10.1002/aelm.201500298 10.1002/smll.201800079 10.1038/natrevmats.2016.100 10.1002/adma.201402878 10.1002/adma.201803961 10.1038/nmat4756 10.1002/smll.201802188 10.1063/1.116313 10.1021/acsami.8b10870 10.1002/adfm.201705202 10.1021/acsnano.8b01282 10.1038/lsa.2016.5 10.1039/C4CP04151H 10.1002/adma.201500039 10.1039/c3cp00132f 10.1038/nature06932 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acsnano.9b00340 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 2642 |
ExternalDocumentID | 30730696 10_1021_acsnano_9b00340 c289580460 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 4.4 5VS 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ BAANH CITATION CUPRZ GGK NPM 7X8 |
ID | FETCH-LOGICAL-a399t-4c19a0102b2942719994a341dd9d0124f35f64815c2e5c20188f18405dfeb3373 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Fri Jul 11 15:21:01 EDT 2025 Sun Jul 13 02:58:20 EDT 2025 Thu Apr 24 22:59:59 EDT 2025 Tue Jul 01 01:34:24 EDT 2025 Thu Aug 27 13:43:24 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Schottky junction artificial synapse optoelectronic device oxide heterojunction visual memory |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a399t-4c19a0102b2942719994a341dd9d0124f35f64815c2e5c20188f18405dfeb3373 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3879-9834 |
PMID | 30730696 |
PQID | 2187025200 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2187025200 pubmed_primary_30730696 crossref_citationtrail_10_1021_acsnano_9b00340 crossref_primary_10_1021_acsnano_9b00340 acs_journals_10_1021_acsnano_9b00340 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-26 |
PublicationDateYYYYMMDD | 2019-02-26 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-26 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2019 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref17/cit17 doi: 10.1002/adma.201705400 – ident: ref18/cit18 doi: 10.1145/359576.359579 – ident: ref20/cit20 doi: 10.1021/acsnano.7b05762 – ident: ref38/cit38 doi: 10.1146/annurev.physiol.64.092501.114547 – ident: ref10/cit10 doi: 10.1038/nnano.2016.70 – ident: ref49/cit49 doi: 10.1021/acsami.8b01036 – ident: ref34/cit34 doi: 10.1063/1.365893 – ident: ref53/cit53 doi: 10.1016/j.materresbull.2012.04.106 – ident: ref52/cit52 doi: 10.1002/adfm.201304121 – ident: ref50/cit50 doi: 10.1016/j.nanoen.2018.08.018 – ident: ref46/cit46 doi: 10.1002/adma.201700212 – ident: ref31/cit31 doi: 10.1002/adfm.201704337 – ident: ref44/cit44 doi: 10.1002/aelm.201700032 – ident: ref28/cit28 doi: 10.1116/1.591472 – ident: ref14/cit14 doi: 10.1038/s41563-017-0001-5 – ident: ref41/cit41 doi: 10.1039/c3tc30575a – ident: ref32/cit32 doi: 10.1103/PhysRevB.72.035215 – ident: ref36/cit36 doi: 10.1063/1.4804374 – ident: ref45/cit45 doi: 10.1039/C6NR00824K – ident: ref9/cit9 doi: 10.1038/nature14441 – ident: ref35/cit35 doi: 10.1002/adma.201700951 – ident: ref55/cit55 doi: 10.1021/nn1005478 – ident: ref54/cit54 doi: 10.1126/science.1202992 – ident: ref3/cit3 doi: 10.1002/adma.201605242 – ident: ref39/cit39 doi: 10.1016/S0079-7421(08)60422-3 – ident: ref21/cit21 doi: 10.1364/OL.36.002032 – ident: ref2/cit2 doi: 10.1021/acs.chemrev.6b00127 – ident: ref47/cit47 doi: 10.1016/S1364-6613(02)00013-X – ident: ref26/cit26 doi: 10.1039/C7TC02197F – ident: ref48/cit48 doi: 10.1039/C7NR06138B – ident: ref40/cit40 doi: 10.1002/adfm.201103148 – ident: ref24/cit24 doi: 10.1038/srep02482 – ident: ref16/cit16 doi: 10.1002/adma.201701772 – ident: ref27/cit27 doi: 10.1063/1.4901053 – ident: ref8/cit8 doi: 10.1021/nl904092h – ident: ref42/cit42 doi: 10.1021/nn202983n – ident: ref15/cit15 doi: 10.1002/adma.201403295 – ident: ref1/cit1 doi: 10.1007/s11571-018-9490-4 – ident: ref33/cit33 doi: 10.1088/0034-4885/59/9/003 – ident: ref37/cit37 doi: 10.1002/aelm.201500298 – ident: ref43/cit43 doi: 10.1002/smll.201800079 – ident: ref4/cit4 doi: 10.1038/natrevmats.2016.100 – ident: ref22/cit22 doi: 10.1002/adma.201402878 – ident: ref6/cit6 doi: 10.1002/adma.201803961 – ident: ref11/cit11 doi: 10.1038/nmat4756 – ident: ref13/cit13 doi: 10.1002/smll.201802188 – ident: ref30/cit30 doi: 10.1063/1.116313 – ident: ref51/cit51 doi: 10.1021/acsami.8b10870 – ident: ref5/cit5 doi: 10.1002/adfm.201705202 – ident: ref12/cit12 doi: 10.1021/acsnano.8b01282 – ident: ref23/cit23 doi: 10.1038/lsa.2016.5 – ident: ref25/cit25 doi: 10.1039/C4CP04151H – ident: ref19/cit19 doi: 10.1002/adma.201500039 – ident: ref29/cit29 doi: 10.1039/c3cp00132f – ident: ref7/cit7 doi: 10.1038/nature06932 |
SSID | ssj0057876 |
Score | 2.6844838 |
Snippet | The rapid development of artificial intelligence techniques and future advanced robot systems sparks emergent demand on the accurate perception and... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2634 |
Title | An Oxide Schottky Junction Artificial Optoelectronic Synapse |
URI | http://dx.doi.org/10.1021/acsnano.9b00340 https://www.ncbi.nlm.nih.gov/pubmed/30730696 https://www.proquest.com/docview/2187025200 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PS8MwFMeDzIse_P1j_qLCDl5a2yRNW_AyhmMMdIc52K2kaQIySYftwPnX-9J2mzqGHnprQpOX5H1fX_IJQi0Xc5ABMrSZ73ObkoTbIZPYFqHnJjyiQqXmP-TTM-uNaH_sj1ew6N8ZfOzdc5FrrjPHwPsIheh8G7MwMHFWuzNcLLpm3LEqgQwBMqiIJcVnrQLjhkT-0w1t0Jalj-nuV7uz8hJNaLaWTJxZkTjicx3c-PfnH6C9Wmla7WpoHKItqY_Q7jf-4DF6aGtr8PGaSsvAOItiMrf64OeMrcpyFV3CGkyLbHVdjjWcaz7N5QkadR9fOj27vk7B5qBCCpsKL-IGIZfgiOLA8AcoByeWplEKbooq4itm2C0CS3hcLwyVif_8VEHETQJyiho60_IcWRwrgkM_hJBWUJrSSLoRkSRhlCvClGiiFrQ7rqdDHpeZbuzFdWfEdWc0kbMwQixqJLm5GeNtc4G7ZYFpRePY_OrtwqoxzBiTBuFaZrM8BlETgNKD5aGJzipzLysrVzwWsYv_NeAS7UA_ReURd3aFGsX7TF6DSCmSm3J4fgFZS99y |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3JTsMwEB2xHIAD-1LWIIHEJSWxHTeR4FABVYG2HACJW3AcR0KgtCKpoHwNv8KfMU7SsqkSFyQOuUQZyxmPZ9547GeAHYsIhAHKNbnjCJPRQJguV8SUrm0FwmMyCvU6ZLPF69fs7Ma5GYHX_lkY7ESCLSVZEf-DXcDex3exiNtlzeFHmVVsozxXvSdM0pLD02Mc0V1CaidXR3WzuEfAFBh-U5NJ2xOaOy0gHiMVffCeCfTeYeiF6J9ZRJ2Ia9ISSRQ-lu26kU58nDDCVJNWKLY7CuMIfYhO76pHl31fr82d53VrzMsRvAzIg350WEc_mXyNfkMgbRbaajPwNlBKtqPlvtxNg7J8-cYX-Z-1NgvTBa42qvlEmIMRFc_D1Ce2xQU4qMbGxfNdqAxNPZqm9z3jDKO6tsxMLufSMC46afvjciDjsheLTqIW4fpPur8EY3E7VitgCBJR4jouJvCSsZB5yvKoogFnIqI8kiXYQT37xeRP_KyuT2y_UL5fKL8E5f7Y-7IgYNf3gDwMF9gbCHRy7pHhn273jclH_6CLPiJW7W7iI4SrIK5FZ1iC5dzKBo1l_p17fPV3P7AFE_WrZsNvnLbO12ASdeZlh_v5Ooylj121gfAsDTazGWLA7V8b1zukUT3K |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1dT9swFL1iIKHtga-NrYyPTAJpLymJ7biJtD1UQNWW0SJ1lXgLjmNLCJRWSyoov4e_sv_FdZIWBqrES6U95CWKLefm-txzc-1jgH2HCKQByre55wmb0UjYPlfElr7rRCJgUsfmP-RZhzf7rH3hXSzAw2QvDA4ixZ7SvIhvZvUw1qXCgHuI9xORDKpGx48yp1xKearGt5iopT9bx_hVDwhpnPw-atrlWQK2wBCc2Uy6gTD6aREJGKmZzfdMIILHcRAjRjNNPc2NcIkkCi_H9X1tkh8v1phu0hrFft_BkikSmhSvftSb4L1xeV7UrjE3RwIzFRB6NWATAWX6bwScQWvz8NZYhb9Tw-SrWq6royyqyvsXmpH_u-XWYKXk11a9mBDrsKCSDfjwTHXxI_yoJ1b37ipWlpEgzbLrsdXG6G48NG9XaGpY3WE2eDokyOqNEzFM1Sfoz2X4m7CYDBL1BSxBNCW-52MiLxmLWaCcgCoacSY05VpWYB_tHJYgkIZ5fZ-4YWn8sDR-BaqT7x_KUojdnAdyM7vB92mDYaFBMvvRbxOHChEnTPFHJGowSkOkcjXktwiKFfhceNq0sxznecC33vYCe7B8ftwIf7U6p1_hPZosyPf4821YzP6M1A6ytCzazSeJBZfz9q1HaSdATQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Oxide+Schottky+Junction+Artificial+Optoelectronic+Synapse&rft.jtitle=ACS+nano&rft.au=Gao%2C+Shuang&rft.au=Liu%2C+Gang&rft.au=Yang%2C+Huali&rft.au=Hu%2C+Chao&rft.date=2019-02-26&rft.issn=1936-086X&rft.eissn=1936-086X&rft.volume=13&rft.issue=2&rft.spage=2634&rft_id=info:doi/10.1021%2Facsnano.9b00340&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |