An Oxide Schottky Junction Artificial Optoelectronic Synapse

The rapid development of artificial intelligence techniques and future advanced robot systems sparks emergent demand on the accurate perception and understanding of the external environments via visual sensing systems that can co-locate the self-adaptive detecting, processing, and memorizing of opti...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 13; no. 2; pp. 2634 - 2642
Main Authors Gao, Shuang, Liu, Gang, Yang, Huali, Hu, Chao, Chen, Qilai, Gong, Guodong, Xue, Wuhong, Yi, Xiaohui, Shang, Jie, Li, Run-Wei
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 26.02.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The rapid development of artificial intelligence techniques and future advanced robot systems sparks emergent demand on the accurate perception and understanding of the external environments via visual sensing systems that can co-locate the self-adaptive detecting, processing, and memorizing of optical signals. In this contribution, a simple indium–tin oxide/Nb-doped SrTiO3 (ITO/Nb:SrTiO3) heterojunction artificial optoelectronic synapse is proposed and demonstrated. Through the light and electric field co-modulation of the Schottky barrier profile at the ITO/Nb:SrTiO3 interface, the oxide heterojunction device can respond to the entire visible light region in a neuromorphic manner, allowing synaptic paired-pulse facilitation, short/long-term memory, and “learning-experience” behavior for optical information manipulation. More importantly, the photoplasticity of the artificial synapse has been modulated by heterosynaptic means with a sub-1 V external voltage, not only enabling an optoelectronic analog of the mechanical aperture device showing adaptive and stable optical perception capability under different illuminating conditions but also making the artificial synapse suitable for the mimicry of interest-modulated human visual memories.
AbstractList The rapid development of artificial intelligence techniques and future advanced robot systems sparks emergent demand on the accurate perception and understanding of the external environments via visual sensing systems that can co-locate the self-adaptive detecting, processing, and memorizing of optical signals. In this contribution, a simple indium-tin oxide/Nb-doped SrTiO3 (ITO/Nb:SrTiO3) heterojunction artificial optoelectronic synapse is proposed and demonstrated. Through the light and electric field co-modulation of the Schottky barrier profile at the ITO/Nb:SrTiO3 interface, the oxide heterojunction device can respond to the entire visible light region in a neuromorphic manner, allowing synaptic paired-pulse facilitation, short/long-term memory, and "learning-experience" behavior for optical information manipulation. More importantly, the photoplasticity of the artificial synapse has been modulated by heterosynaptic means with a sub-1 V external voltage, not only enabling an optoelectronic analog of the mechanical aperture device showing adaptive and stable optical perception capability under different illuminating conditions but also making the artificial synapse suitable for the mimicry of interest-modulated human visual memories.The rapid development of artificial intelligence techniques and future advanced robot systems sparks emergent demand on the accurate perception and understanding of the external environments via visual sensing systems that can co-locate the self-adaptive detecting, processing, and memorizing of optical signals. In this contribution, a simple indium-tin oxide/Nb-doped SrTiO3 (ITO/Nb:SrTiO3) heterojunction artificial optoelectronic synapse is proposed and demonstrated. Through the light and electric field co-modulation of the Schottky barrier profile at the ITO/Nb:SrTiO3 interface, the oxide heterojunction device can respond to the entire visible light region in a neuromorphic manner, allowing synaptic paired-pulse facilitation, short/long-term memory, and "learning-experience" behavior for optical information manipulation. More importantly, the photoplasticity of the artificial synapse has been modulated by heterosynaptic means with a sub-1 V external voltage, not only enabling an optoelectronic analog of the mechanical aperture device showing adaptive and stable optical perception capability under different illuminating conditions but also making the artificial synapse suitable for the mimicry of interest-modulated human visual memories.
The rapid development of artificial intelligence techniques and future advanced robot systems sparks emergent demand on the accurate perception and understanding of the external environments via visual sensing systems that can co-locate the self-adaptive detecting, processing, and memorizing of optical signals. In this contribution, a simple indium–tin oxide/Nb-doped SrTiO3 (ITO/Nb:SrTiO3) heterojunction artificial optoelectronic synapse is proposed and demonstrated. Through the light and electric field co-modulation of the Schottky barrier profile at the ITO/Nb:SrTiO3 interface, the oxide heterojunction device can respond to the entire visible light region in a neuromorphic manner, allowing synaptic paired-pulse facilitation, short/long-term memory, and “learning-experience” behavior for optical information manipulation. More importantly, the photoplasticity of the artificial synapse has been modulated by heterosynaptic means with a sub-1 V external voltage, not only enabling an optoelectronic analog of the mechanical aperture device showing adaptive and stable optical perception capability under different illuminating conditions but also making the artificial synapse suitable for the mimicry of interest-modulated human visual memories.
The rapid development of artificial intelligence techniques and future advanced robot systems sparks emergent demand on the accurate perception and understanding of the external environments via visual sensing systems that can co-locate the self-adaptive detecting, processing, and memorizing of optical signals. In this contribution, a simple indium-tin oxide/Nb-doped SrTiO (ITO/Nb:SrTiO ) heterojunction artificial optoelectronic synapse is proposed and demonstrated. Through the light and electric field co-modulation of the Schottky barrier profile at the ITO/Nb:SrTiO interface, the oxide heterojunction device can respond to the entire visible light region in a neuromorphic manner, allowing synaptic paired-pulse facilitation, short/long-term memory, and "learning-experience" behavior for optical information manipulation. More importantly, the photoplasticity of the artificial synapse has been modulated by heterosynaptic means with a sub-1 V external voltage, not only enabling an optoelectronic analog of the mechanical aperture device showing adaptive and stable optical perception capability under different illuminating conditions but also making the artificial synapse suitable for the mimicry of interest-modulated human visual memories.
Author Liu, Gang
Hu, Chao
Gong, Guodong
Shang, Jie
Gao, Shuang
Xue, Wuhong
Yang, Huali
Chen, Qilai
Yi, Xiaohui
Li, Run-Wei
AuthorAffiliation CAS Key Laboratory of Magnetic Materials and Devices
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences
Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology
AuthorAffiliation_xml – name: Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences
– name: Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology
– name: CAS Key Laboratory of Magnetic Materials and Devices
Author_xml – sequence: 1
  givenname: Shuang
  surname: Gao
  fullname: Gao, Shuang
  organization: Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences
– sequence: 2
  givenname: Gang
  surname: Liu
  fullname: Liu, Gang
  email: liug@nimte.ac.cn
  organization: Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences
– sequence: 3
  givenname: Huali
  surname: Yang
  fullname: Yang, Huali
  organization: Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences
– sequence: 4
  givenname: Chao
  surname: Hu
  fullname: Hu, Chao
  organization: Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences
– sequence: 5
  givenname: Qilai
  surname: Chen
  fullname: Chen, Qilai
  organization: Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences
– sequence: 6
  givenname: Guodong
  surname: Gong
  fullname: Gong, Guodong
  organization: Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences
– sequence: 7
  givenname: Wuhong
  surname: Xue
  fullname: Xue, Wuhong
  organization: Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences
– sequence: 8
  givenname: Xiaohui
  surname: Yi
  fullname: Yi, Xiaohui
  organization: Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences
– sequence: 9
  givenname: Jie
  surname: Shang
  fullname: Shang, Jie
  organization: Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences
– sequence: 10
  givenname: Run-Wei
  orcidid: 0000-0003-3879-9834
  surname: Li
  fullname: Li, Run-Wei
  email: runweili@nimte.ac.cn
  organization: Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30730696$$D View this record in MEDLINE/PubMed
BookMark eNp1kMtLAzEQxoNU7EPP3mSPgmyb1z4CXkrxSaGHKngL2WwWU7fJmmTB_vdu6daD0MMwA_N9w3y_MRgYaxQA1whOEcRoJqQ3wtgpKyAkFJ6BEWIkjWGefgz-5gQNwdj7DYRJlmfpBRgSmBGYsnQE7ucmWv3oUkVr-WlD-NpFr62RQVsTzV3QlZZa1NGqCVbVSgZnjZbRemdE49UlOK9E7dVV3yfg_fHhbfEcL1dPL4v5MhaEsRBTiZiA3b8FZhRniDFGBaGoLFkJEaYVSaqU5iiRWHUFUZ5XKKcwKStVEJKRCbg93G2c_W6VD3yrvVR1LYyyrecY5RnECe4YTMBNL22LrSp54_RWuB0_Ju4EyUEgnfXeqYpLHcQ-b3BC1xxBvifLe7K8J9v5Zv98x9OnHXcHR7fgG9s60zE6qf4FiZ-JiQ
CitedBy_id crossref_primary_10_1002_aelm_202200668
crossref_primary_10_1021_acsnano_0c08921
crossref_primary_10_1016_j_jallcom_2022_163873
crossref_primary_10_1016_j_mtchem_2021_100681
crossref_primary_10_1039_D5TC00591D
crossref_primary_10_1002_advs_202409933
crossref_primary_10_1002_adfm_202425627
crossref_primary_10_1021_acsaelm_4c02275
crossref_primary_10_1021_acsami_4c09593
crossref_primary_10_1039_D1NA00152C
crossref_primary_10_1002_adfm_202309531
crossref_primary_10_1109_LED_2021_3061948
crossref_primary_10_1002_adfm_202008259
crossref_primary_10_1063_5_0197199
crossref_primary_10_1002_aelm_202100014
crossref_primary_10_1039_D4TA05024J
crossref_primary_10_1063_5_0071748
crossref_primary_10_1002_adma_202307393
crossref_primary_10_1016_j_nanoen_2020_104756
crossref_primary_10_1021_acsami_4c07732
crossref_primary_10_7498_aps_71_20220463
crossref_primary_10_1016_j_nanoen_2021_106654
crossref_primary_10_1016_j_nanoen_2023_108398
crossref_primary_10_1002_smll_202006662
crossref_primary_10_1002_anie_202213733
crossref_primary_10_1002_adfm_202212666
crossref_primary_10_1016_j_surfin_2024_104587
crossref_primary_10_1016_j_jmst_2021_11_082
crossref_primary_10_1016_j_sna_2024_115449
crossref_primary_10_1002_adfm_202407746
crossref_primary_10_1021_acsaelm_2c01665
crossref_primary_10_1002_adfm_202425635
crossref_primary_10_3390_nano14191573
crossref_primary_10_1002_adom_202201104
crossref_primary_10_7498_aps_71_20220226
crossref_primary_10_1002_aelm_202201068
crossref_primary_10_7498_aps_68_20191262
crossref_primary_10_1007_s40843_022_2318_9
crossref_primary_10_1002_adfm_202207290
crossref_primary_10_1007_s00339_020_03614_2
crossref_primary_10_1039_D0TC04250A
crossref_primary_10_15187_adr_2022_08_35_3_95
crossref_primary_10_3390_nano11061361
crossref_primary_10_1002_adfm_202213874
crossref_primary_10_1016_j_chip_2022_100031
crossref_primary_10_1021_acs_nanolett_2c02675
crossref_primary_10_1126_sciadv_abc6389
crossref_primary_10_1021_acs_jpcc_3c06005
crossref_primary_10_1002_aisy_202000099
crossref_primary_10_1002_aisy_202200316
crossref_primary_10_1002_pssa_201900555
crossref_primary_10_1002_apxr_202400115
crossref_primary_10_1002_smm2_1246
crossref_primary_10_1016_j_apmt_2022_101728
crossref_primary_10_1038_s41467_023_42488_9
crossref_primary_10_1021_acsami_3c10366
crossref_primary_10_1063_5_0102231
crossref_primary_10_1021_acsaelm_1c01237
crossref_primary_10_3389_fnano_2022_954165
crossref_primary_10_7498_aps_71_20220350
crossref_primary_10_1002_adfm_202314660
crossref_primary_10_1039_D0NR04950F
crossref_primary_10_1080_14686996_2023_2186689
crossref_primary_10_1109_JSEN_2023_3341617
crossref_primary_10_1088_1361_6463_ac7f66
crossref_primary_10_1021_acsami_1c13355
crossref_primary_10_1016_j_mtnano_2024_100480
crossref_primary_10_1002_aelm_201900765
crossref_primary_10_1007_s40820_024_01338_z
crossref_primary_10_1039_C9TC06749C
crossref_primary_10_1039_D1MH01061A
crossref_primary_10_1002_aelm_202101003
crossref_primary_10_1038_s43246_024_00553_w
crossref_primary_10_1016_j_sse_2020_107764
crossref_primary_10_1002_adom_202000153
crossref_primary_10_3390_nano14181501
crossref_primary_10_1021_acs_jpclett_2c03939
crossref_primary_10_1002_aisy_202200328
crossref_primary_10_1007_s40820_023_01116_3
crossref_primary_10_1039_D0NR02184A
crossref_primary_10_1002_smtd_202401543
crossref_primary_10_1021_acsnano_0c06874
crossref_primary_10_1016_j_jallcom_2025_179053
crossref_primary_10_1038_s41528_022_00163_x
crossref_primary_10_1002_aelm_201901044
crossref_primary_10_1021_acs_nanolett_4c00124
crossref_primary_10_1002_advs_202004208
crossref_primary_10_1021_acs_nanolett_0c00298
crossref_primary_10_1002_admt_202201125
crossref_primary_10_1002_aelm_202101235
crossref_primary_10_1364_PRJ_507178
crossref_primary_10_1016_j_cej_2024_152850
crossref_primary_10_1016_j_xcrp_2021_100507
crossref_primary_10_1021_acsami_1c03202
crossref_primary_10_1016_j_nanoen_2024_109733
crossref_primary_10_1109_LED_2022_3201948
crossref_primary_10_34133_research_0427
crossref_primary_10_1016_j_nanoen_2020_105014
crossref_primary_10_1016_j_apsusc_2022_156232
crossref_primary_10_1002_pi_6017
crossref_primary_10_1088_1674_1056_ab99b6
crossref_primary_10_1038_s41699_024_00458_9
crossref_primary_10_1002_smll_202005491
crossref_primary_10_1016_j_nanoen_2022_108072
crossref_primary_10_1002_aelm_202400482
crossref_primary_10_1002_adma_202208683
crossref_primary_10_1021_acsami_0c10851
crossref_primary_10_1002_aelm_201900858
crossref_primary_10_1002_inf2_12012
crossref_primary_10_1016_j_ceramint_2021_11_005
crossref_primary_10_1021_acsami_0c22604
crossref_primary_10_1088_1674_1056_acc7fa
crossref_primary_10_1002_smm2_1154
crossref_primary_10_1002_adfm_202101201
crossref_primary_10_1186_s11671_024_04060_2
crossref_primary_10_1002_aelm_202101260
crossref_primary_10_1038_s41467_022_32790_3
crossref_primary_10_1021_acsami_4c08070
crossref_primary_10_1063_5_0087624
crossref_primary_10_1039_D4MH00064A
crossref_primary_10_1021_acsami_4c02092
crossref_primary_10_1021_acs_nanolett_4c02447
crossref_primary_10_1016_j_nanoen_2023_108928
crossref_primary_10_1002_aelm_202400006
crossref_primary_10_1039_D1CC03060D
crossref_primary_10_1021_jacs_2c13471
crossref_primary_10_1002_adfm_202302885
crossref_primary_10_1016_j_nanoen_2019_05_064
crossref_primary_10_1021_acsami_4c04398
crossref_primary_10_1002_adma_202309940
crossref_primary_10_1021_acsami_3c11495
crossref_primary_10_1002_adfm_202211467
crossref_primary_10_1021_acsphotonics_2c01583
crossref_primary_10_1002_advs_202105577
crossref_primary_10_1021_acs_jpclett_4c01980
crossref_primary_10_1016_j_chip_2024_100088
crossref_primary_10_1002_adma_202004207
crossref_primary_10_1002_aisy_202000107
crossref_primary_10_1002_adfm_202100807
crossref_primary_10_1002_adma_202310155
crossref_primary_10_1088_1674_1056_ad08a5
crossref_primary_10_1021_acsaelm_3c01266
crossref_primary_10_1002_smtd_202402151
crossref_primary_10_1021_acsnano_2c09747
crossref_primary_10_1063_5_0160599
crossref_primary_10_1002_adom_202101372
crossref_primary_10_1016_j_nanoen_2023_109102
crossref_primary_10_1038_s41598_020_62945_5
crossref_primary_10_1002_adma_202403150
crossref_primary_10_1002_aisy_202400968
crossref_primary_10_1002_adma_202407751
crossref_primary_10_1016_j_jallcom_2025_179771
crossref_primary_10_1088_2752_5724_acda4d
crossref_primary_10_1002_aelm_201901363
crossref_primary_10_1016_j_orgel_2021_106390
crossref_primary_10_1039_D0TC01156H
crossref_primary_10_1021_acsanm_3c00796
crossref_primary_10_1002_adpr_202400146
crossref_primary_10_1002_adma_202311472
crossref_primary_10_1002_aisy_202000119
crossref_primary_10_1002_smtd_202400779
crossref_primary_10_1063_5_0231484
crossref_primary_10_1002_admt_202200870
crossref_primary_10_1002_advs_202202019
crossref_primary_10_1002_adom_202402193
crossref_primary_10_1039_D1MH01433A
crossref_primary_10_1364_PRJ_480057
crossref_primary_10_1063_5_0256082
crossref_primary_10_1002_adfm_202110976
crossref_primary_10_1038_s41928_023_00950_y
crossref_primary_10_1002_aelm_202300135
crossref_primary_10_1002_pssr_201900082
crossref_primary_10_1021_acsami_2c01162
crossref_primary_10_1002_adma_201907826
crossref_primary_10_1021_acs_jpclett_2c00176
crossref_primary_10_1088_2634_4386_acd4e2
crossref_primary_10_1021_acsaelm_3c01808
crossref_primary_10_1002_adma_202411420
crossref_primary_10_1016_j_matdes_2022_111218
crossref_primary_10_1002_adfm_202107973
crossref_primary_10_1002_advs_202103494
crossref_primary_10_1016_j_vacuum_2021_110422
crossref_primary_10_1002_adfm_202309378
crossref_primary_10_1039_D4TC00371C
crossref_primary_10_1039_D2RA02749F
crossref_primary_10_1088_1361_6463_ad77df
crossref_primary_10_1063_5_0194083
crossref_primary_10_1038_s41377_025_01743_y
crossref_primary_10_3390_ma15103637
crossref_primary_10_1002_aisy_201900136
crossref_primary_10_1063_5_0092968
crossref_primary_10_1016_j_jallcom_2020_157593
crossref_primary_10_1016_j_carbon_2021_06_060
crossref_primary_10_1038_s41467_023_38608_0
crossref_primary_10_1002_smll_202007241
crossref_primary_10_1016_j_mtelec_2024_100099
crossref_primary_10_1007_s40843_021_2029_y
crossref_primary_10_1088_1674_1056_ab75da
crossref_primary_10_1063_1_5120352
crossref_primary_10_1063_5_0083465
crossref_primary_10_1002_aelm_202201226
crossref_primary_10_1088_1361_6528_ad22b1
crossref_primary_10_1016_j_orgel_2019_05_015
crossref_primary_10_1002_adfm_202302288
crossref_primary_10_1063_1_5109090
crossref_primary_10_1039_D0MH01037E
crossref_primary_10_1016_j_jallcom_2023_171712
crossref_primary_10_1021_acs_nanolett_3c01853
crossref_primary_10_35848_1347_4065_adb162
crossref_primary_10_1002_smll_202309945
crossref_primary_10_1039_D2NH00532H
crossref_primary_10_7498_aps_72_20230954
crossref_primary_10_1002_adfm_202002325
crossref_primary_10_1021_acsmaterialslett_2c00911
crossref_primary_10_1021_acs_nanolett_4c05764
crossref_primary_10_1002_adom_202201852
crossref_primary_10_1038_s41598_022_18821_5
crossref_primary_10_1021_acsami_4c11926
crossref_primary_10_1002_aisy_202000149
crossref_primary_10_1088_2752_5724_acc678
crossref_primary_10_1016_j_mtcomm_2023_107546
crossref_primary_10_1002_advs_202305679
crossref_primary_10_1038_s41377_024_01519_w
crossref_primary_10_34133_2021_7131895
crossref_primary_10_1021_acsaelm_3c01462
crossref_primary_10_1021_acsaelm_4c01208
crossref_primary_10_1088_1674_1056_ad1c58
crossref_primary_10_1016_j_nanoen_2021_106471
crossref_primary_10_1021_acsphotonics_4c01535
crossref_primary_10_1088_0256_307X_39_6_068501
crossref_primary_10_1063_5_0033427
crossref_primary_10_1177_09506608251318108
crossref_primary_10_1103_PhysRevApplied_16_044049
crossref_primary_10_1109_LED_2023_3306348
crossref_primary_10_1039_D3TC01005H
crossref_primary_10_1039_D3MH00775H
crossref_primary_10_1002_adfm_202105345
crossref_primary_10_1007_s10854_022_08702_y
crossref_primary_10_1016_j_ceramint_2022_04_143
crossref_primary_10_1063_5_0181090
crossref_primary_10_1002_adfm_202209091
crossref_primary_10_1002_aisy_202200298
crossref_primary_10_1002_inf2_12528
crossref_primary_10_1039_D0TC03907A
crossref_primary_10_1016_j_snb_2021_130745
crossref_primary_10_1002_smll_202402273
crossref_primary_10_1007_s00339_024_07668_4
crossref_primary_10_1039_D0MH01730B
crossref_primary_10_1039_D3NR00900A
crossref_primary_10_1002_adfm_202409677
crossref_primary_10_1021_acs_nanolett_3c01076
crossref_primary_10_1021_acs_nanolett_2c01768
crossref_primary_10_1021_acsapm_2c00655
crossref_primary_10_1002_ange_202213733
crossref_primary_10_1021_acsaelm_2c00033
crossref_primary_10_1002_adma_202305857
crossref_primary_10_1016_j_apsusc_2023_157325
crossref_primary_10_3390_app10238358
crossref_primary_10_1007_s12274_022_4132_x
crossref_primary_10_1039_D0MH00312C
crossref_primary_10_1002_pssr_202000394
crossref_primary_10_1002_smll_202102820
crossref_primary_10_1002_lpor_202400319
crossref_primary_10_1007_s40820_021_00618_2
crossref_primary_10_1039_D0NR07297D
crossref_primary_10_1021_acsami_1c23986
crossref_primary_10_1016_j_matchar_2021_111578
crossref_primary_10_1002_adfm_202005582
crossref_primary_10_1002_adma_202205459
crossref_primary_10_1039_D0TC05563H
crossref_primary_10_1002_adma_202403444
crossref_primary_10_1063_5_0220524
crossref_primary_10_1016_j_nanoen_2020_104790
crossref_primary_10_1021_acsnano_9b07687
crossref_primary_10_1088_1674_4926_41_5_051205
crossref_primary_10_1002_aelm_202300863
crossref_primary_10_1016_j_scib_2022_05_008
crossref_primary_10_34133_2019_9490413
crossref_primary_10_1016_j_xcrp_2022_101037
crossref_primary_10_1021_acsaelm_5c00090
crossref_primary_10_1063_5_0191339
crossref_primary_10_7498_aps_71_20220308
crossref_primary_10_1016_j_apmt_2023_102032
crossref_primary_10_1002_adma_202002431
crossref_primary_10_1002_adma_202106881
crossref_primary_10_1088_1674_4926_24100025
crossref_primary_10_1063_5_0076672
crossref_primary_10_1002_adfm_202306173
crossref_primary_10_1016_j_carbon_2022_04_016
crossref_primary_10_1039_D2TC03800E
crossref_primary_10_1039_D4NR00904E
crossref_primary_10_1016_j_jmst_2024_02_007
crossref_primary_10_1021_acsnano_3c04113
crossref_primary_10_1002_aelm_202000950
crossref_primary_10_1002_smm2_1322
crossref_primary_10_1186_s43074_023_00082_8
crossref_primary_10_1016_j_nanoen_2024_109267
crossref_primary_10_1002_adma_202006469
crossref_primary_10_1002_smll_202309851
crossref_primary_10_1021_acssensors_3c00487
crossref_primary_10_1002_admi_202201558
crossref_primary_10_1021_acs_nanolett_0c03652
crossref_primary_10_3389_fphy_2022_839243
crossref_primary_10_1109_TED_2023_3312229
crossref_primary_10_1021_acsaelm_3c01549
crossref_primary_10_1002_adfm_202006773
crossref_primary_10_1088_1361_6463_ac12f9
crossref_primary_10_1103_PhysRevB_104_235308
crossref_primary_10_1002_adom_202303248
crossref_primary_10_1002_aelm_202400732
crossref_primary_10_1002_adma_202205679
crossref_primary_10_1002_adfm_202208807
crossref_primary_10_1016_j_nanoen_2021_106439
crossref_primary_10_1088_2058_8585_ac4bb2
crossref_primary_10_1007_s40820_022_00945_y
crossref_primary_10_1021_acsami_9b13434
crossref_primary_10_1002_adma_202108979
crossref_primary_10_1039_D0NR08082A
crossref_primary_10_1016_j_matdes_2023_112367
crossref_primary_10_1016_j_matdes_2023_112368
crossref_primary_10_1016_j_eng_2022_01_009
crossref_primary_10_1186_s11671_022_03744_x
crossref_primary_10_1063_5_0220628
crossref_primary_10_1016_j_fmre_2022_06_019
crossref_primary_10_1002_adom_201900766
crossref_primary_10_1002_admi_201900471
crossref_primary_10_1002_adom_202100449
crossref_primary_10_1002_advs_202104632
crossref_primary_10_1002_sstr_202000029
crossref_primary_10_1002_advs_202304804
crossref_primary_10_1002_admt_202300449
crossref_primary_10_1002_adpr_202000185
crossref_primary_10_1002_adfm_202306272
crossref_primary_10_1016_j_electacta_2023_143512
crossref_primary_10_1002_adma_202208497
crossref_primary_10_1007_s12274_022_4122_z
crossref_primary_10_1039_C9MH01923E
crossref_primary_10_1021_acsaelm_4c01653
crossref_primary_10_1016_j_nanoen_2022_106987
crossref_primary_10_1002_adfm_201908901
crossref_primary_10_1002_advs_202500521
crossref_primary_10_1063_5_0168362
crossref_primary_10_1002_adfm_202306945
crossref_primary_10_1002_adom_202300089
crossref_primary_10_1021_acsaelm_3c01795
crossref_primary_10_1038_s41467_022_34230_8
crossref_primary_10_1186_s11671_023_03906_5
crossref_primary_10_1039_D3NR06521A
crossref_primary_10_1002_aisy_202300350
crossref_primary_10_1021_acsami_4c14694
crossref_primary_10_1021_acs_nanolett_2c00599
crossref_primary_10_1021_acssuschemeng_3c05027
crossref_primary_10_1088_1674_1056_ab973f
crossref_primary_10_1021_acs_chemrev_9b00730
crossref_primary_10_1063_5_0255395
Cites_doi 10.1002/adma.201705400
10.1145/359576.359579
10.1021/acsnano.7b05762
10.1146/annurev.physiol.64.092501.114547
10.1038/nnano.2016.70
10.1021/acsami.8b01036
10.1063/1.365893
10.1016/j.materresbull.2012.04.106
10.1002/adfm.201304121
10.1016/j.nanoen.2018.08.018
10.1002/adma.201700212
10.1002/adfm.201704337
10.1002/aelm.201700032
10.1116/1.591472
10.1038/s41563-017-0001-5
10.1039/c3tc30575a
10.1103/PhysRevB.72.035215
10.1063/1.4804374
10.1039/C6NR00824K
10.1038/nature14441
10.1002/adma.201700951
10.1021/nn1005478
10.1126/science.1202992
10.1002/adma.201605242
10.1016/S0079-7421(08)60422-3
10.1364/OL.36.002032
10.1021/acs.chemrev.6b00127
10.1016/S1364-6613(02)00013-X
10.1039/C7TC02197F
10.1039/C7NR06138B
10.1002/adfm.201103148
10.1038/srep02482
10.1002/adma.201701772
10.1063/1.4901053
10.1021/nl904092h
10.1021/nn202983n
10.1002/adma.201403295
10.1007/s11571-018-9490-4
10.1088/0034-4885/59/9/003
10.1002/aelm.201500298
10.1002/smll.201800079
10.1038/natrevmats.2016.100
10.1002/adma.201402878
10.1002/adma.201803961
10.1038/nmat4756
10.1002/smll.201802188
10.1063/1.116313
10.1021/acsami.8b10870
10.1002/adfm.201705202
10.1021/acsnano.8b01282
10.1038/lsa.2016.5
10.1039/C4CP04151H
10.1002/adma.201500039
10.1039/c3cp00132f
10.1038/nature06932
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acsnano.9b00340
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 2642
ExternalDocumentID 30730696
10_1021_acsnano_9b00340
c289580460
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
4.4
5VS
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
ID FETCH-LOGICAL-a399t-4c19a0102b2942719994a341dd9d0124f35f64815c2e5c20188f18405dfeb3373
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Fri Jul 11 15:21:01 EDT 2025
Sun Jul 13 02:58:20 EDT 2025
Thu Apr 24 22:59:59 EDT 2025
Tue Jul 01 01:34:24 EDT 2025
Thu Aug 27 13:43:24 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Schottky junction
artificial synapse
optoelectronic device
oxide heterojunction
visual memory
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a399t-4c19a0102b2942719994a341dd9d0124f35f64815c2e5c20188f18405dfeb3373
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3879-9834
PMID 30730696
PQID 2187025200
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2187025200
pubmed_primary_30730696
crossref_citationtrail_10_1021_acsnano_9b00340
crossref_primary_10_1021_acsnano_9b00340
acs_journals_10_1021_acsnano_9b00340
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-26
PublicationDateYYYYMMDD 2019-02-26
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-26
  day: 26
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref17/cit17
  doi: 10.1002/adma.201705400
– ident: ref18/cit18
  doi: 10.1145/359576.359579
– ident: ref20/cit20
  doi: 10.1021/acsnano.7b05762
– ident: ref38/cit38
  doi: 10.1146/annurev.physiol.64.092501.114547
– ident: ref10/cit10
  doi: 10.1038/nnano.2016.70
– ident: ref49/cit49
  doi: 10.1021/acsami.8b01036
– ident: ref34/cit34
  doi: 10.1063/1.365893
– ident: ref53/cit53
  doi: 10.1016/j.materresbull.2012.04.106
– ident: ref52/cit52
  doi: 10.1002/adfm.201304121
– ident: ref50/cit50
  doi: 10.1016/j.nanoen.2018.08.018
– ident: ref46/cit46
  doi: 10.1002/adma.201700212
– ident: ref31/cit31
  doi: 10.1002/adfm.201704337
– ident: ref44/cit44
  doi: 10.1002/aelm.201700032
– ident: ref28/cit28
  doi: 10.1116/1.591472
– ident: ref14/cit14
  doi: 10.1038/s41563-017-0001-5
– ident: ref41/cit41
  doi: 10.1039/c3tc30575a
– ident: ref32/cit32
  doi: 10.1103/PhysRevB.72.035215
– ident: ref36/cit36
  doi: 10.1063/1.4804374
– ident: ref45/cit45
  doi: 10.1039/C6NR00824K
– ident: ref9/cit9
  doi: 10.1038/nature14441
– ident: ref35/cit35
  doi: 10.1002/adma.201700951
– ident: ref55/cit55
  doi: 10.1021/nn1005478
– ident: ref54/cit54
  doi: 10.1126/science.1202992
– ident: ref3/cit3
  doi: 10.1002/adma.201605242
– ident: ref39/cit39
  doi: 10.1016/S0079-7421(08)60422-3
– ident: ref21/cit21
  doi: 10.1364/OL.36.002032
– ident: ref2/cit2
  doi: 10.1021/acs.chemrev.6b00127
– ident: ref47/cit47
  doi: 10.1016/S1364-6613(02)00013-X
– ident: ref26/cit26
  doi: 10.1039/C7TC02197F
– ident: ref48/cit48
  doi: 10.1039/C7NR06138B
– ident: ref40/cit40
  doi: 10.1002/adfm.201103148
– ident: ref24/cit24
  doi: 10.1038/srep02482
– ident: ref16/cit16
  doi: 10.1002/adma.201701772
– ident: ref27/cit27
  doi: 10.1063/1.4901053
– ident: ref8/cit8
  doi: 10.1021/nl904092h
– ident: ref42/cit42
  doi: 10.1021/nn202983n
– ident: ref15/cit15
  doi: 10.1002/adma.201403295
– ident: ref1/cit1
  doi: 10.1007/s11571-018-9490-4
– ident: ref33/cit33
  doi: 10.1088/0034-4885/59/9/003
– ident: ref37/cit37
  doi: 10.1002/aelm.201500298
– ident: ref43/cit43
  doi: 10.1002/smll.201800079
– ident: ref4/cit4
  doi: 10.1038/natrevmats.2016.100
– ident: ref22/cit22
  doi: 10.1002/adma.201402878
– ident: ref6/cit6
  doi: 10.1002/adma.201803961
– ident: ref11/cit11
  doi: 10.1038/nmat4756
– ident: ref13/cit13
  doi: 10.1002/smll.201802188
– ident: ref30/cit30
  doi: 10.1063/1.116313
– ident: ref51/cit51
  doi: 10.1021/acsami.8b10870
– ident: ref5/cit5
  doi: 10.1002/adfm.201705202
– ident: ref12/cit12
  doi: 10.1021/acsnano.8b01282
– ident: ref23/cit23
  doi: 10.1038/lsa.2016.5
– ident: ref25/cit25
  doi: 10.1039/C4CP04151H
– ident: ref19/cit19
  doi: 10.1002/adma.201500039
– ident: ref29/cit29
  doi: 10.1039/c3cp00132f
– ident: ref7/cit7
  doi: 10.1038/nature06932
SSID ssj0057876
Score 2.6844838
Snippet The rapid development of artificial intelligence techniques and future advanced robot systems sparks emergent demand on the accurate perception and...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2634
Title An Oxide Schottky Junction Artificial Optoelectronic Synapse
URI http://dx.doi.org/10.1021/acsnano.9b00340
https://www.ncbi.nlm.nih.gov/pubmed/30730696
https://www.proquest.com/docview/2187025200
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PS8MwFMeDzIse_P1j_qLCDl5a2yRNW_AyhmMMdIc52K2kaQIySYftwPnX-9J2mzqGHnprQpOX5H1fX_IJQi0Xc5ABMrSZ73ObkoTbIZPYFqHnJjyiQqXmP-TTM-uNaH_sj1ew6N8ZfOzdc5FrrjPHwPsIheh8G7MwMHFWuzNcLLpm3LEqgQwBMqiIJcVnrQLjhkT-0w1t0Jalj-nuV7uz8hJNaLaWTJxZkTjicx3c-PfnH6C9Wmla7WpoHKItqY_Q7jf-4DF6aGtr8PGaSsvAOItiMrf64OeMrcpyFV3CGkyLbHVdjjWcaz7N5QkadR9fOj27vk7B5qBCCpsKL-IGIZfgiOLA8AcoByeWplEKbooq4itm2C0CS3hcLwyVif_8VEHETQJyiho60_IcWRwrgkM_hJBWUJrSSLoRkSRhlCvClGiiFrQ7rqdDHpeZbuzFdWfEdWc0kbMwQixqJLm5GeNtc4G7ZYFpRePY_OrtwqoxzBiTBuFaZrM8BlETgNKD5aGJzipzLysrVzwWsYv_NeAS7UA_ReURd3aFGsX7TF6DSCmSm3J4fgFZS99y
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3JTsMwEB2xHIAD-1LWIIHEJSWxHTeR4FABVYG2HACJW3AcR0KgtCKpoHwNv8KfMU7SsqkSFyQOuUQZyxmPZ9547GeAHYsIhAHKNbnjCJPRQJguV8SUrm0FwmMyCvU6ZLPF69fs7Ma5GYHX_lkY7ESCLSVZEf-DXcDex3exiNtlzeFHmVVsozxXvSdM0pLD02Mc0V1CaidXR3WzuEfAFBh-U5NJ2xOaOy0gHiMVffCeCfTeYeiF6J9ZRJ2Ia9ISSRQ-lu26kU58nDDCVJNWKLY7CuMIfYhO76pHl31fr82d53VrzMsRvAzIg350WEc_mXyNfkMgbRbaajPwNlBKtqPlvtxNg7J8-cYX-Z-1NgvTBa42qvlEmIMRFc_D1Ce2xQU4qMbGxfNdqAxNPZqm9z3jDKO6tsxMLufSMC46afvjciDjsheLTqIW4fpPur8EY3E7VitgCBJR4jouJvCSsZB5yvKoogFnIqI8kiXYQT37xeRP_KyuT2y_UL5fKL8E5f7Y-7IgYNf3gDwMF9gbCHRy7pHhn273jclH_6CLPiJW7W7iI4SrIK5FZ1iC5dzKBo1l_p17fPV3P7AFE_WrZsNvnLbO12ASdeZlh_v5Ooylj121gfAsDTazGWLA7V8b1zukUT3K
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1dT9swFL1iIKHtga-NrYyPTAJpLymJ7biJtD1UQNWW0SJ1lXgLjmNLCJRWSyoov4e_sv_FdZIWBqrES6U95CWKLefm-txzc-1jgH2HCKQByre55wmb0UjYPlfElr7rRCJgUsfmP-RZhzf7rH3hXSzAw2QvDA4ixZ7SvIhvZvUw1qXCgHuI9xORDKpGx48yp1xKearGt5iopT9bx_hVDwhpnPw-atrlWQK2wBCc2Uy6gTD6aREJGKmZzfdMIILHcRAjRjNNPc2NcIkkCi_H9X1tkh8v1phu0hrFft_BkikSmhSvftSb4L1xeV7UrjE3RwIzFRB6NWATAWX6bwScQWvz8NZYhb9Tw-SrWq6royyqyvsXmpH_u-XWYKXk11a9mBDrsKCSDfjwTHXxI_yoJ1b37ipWlpEgzbLrsdXG6G48NG9XaGpY3WE2eDokyOqNEzFM1Sfoz2X4m7CYDBL1BSxBNCW-52MiLxmLWaCcgCoacSY05VpWYB_tHJYgkIZ5fZ-4YWn8sDR-BaqT7x_KUojdnAdyM7vB92mDYaFBMvvRbxOHChEnTPFHJGowSkOkcjXktwiKFfhceNq0sxznecC33vYCe7B8ftwIf7U6p1_hPZosyPf4821YzP6M1A6ytCzazSeJBZfz9q1HaSdATQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Oxide+Schottky+Junction+Artificial+Optoelectronic+Synapse&rft.jtitle=ACS+nano&rft.au=Gao%2C+Shuang&rft.au=Liu%2C+Gang&rft.au=Yang%2C+Huali&rft.au=Hu%2C+Chao&rft.date=2019-02-26&rft.issn=1936-086X&rft.eissn=1936-086X&rft.volume=13&rft.issue=2&rft.spage=2634&rft_id=info:doi/10.1021%2Facsnano.9b00340&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon