Experimental study of temperature effects on physical and mechanical characteristics of salt rock

Because of its advantageous physical and mechanical characteristics, salt rock is considered an excellent host rock for nuclear waste disposal. Nuclear wastes in a salt rock repository will continue to emit radiation and thermal energy for decades after placement, resulting in a significant rise of...

Full description

Saved in:
Bibliographic Details
Published inRock mechanics and rock engineering Vol. 39; no. 5; pp. 469 - 482
Main Authors LIANG, W. G, XU, S. G, ZHAO, Y. S
Format Journal Article
LanguageEnglish
Published Wien Springer 01.11.2006
New York, NY Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Because of its advantageous physical and mechanical characteristics, salt rock is considered an excellent host rock for nuclear waste disposal. Nuclear wastes in a salt rock repository will continue to emit radiation and thermal energy for decades after placement, resulting in a significant rise of the surrounding salt rock temperature. Consequently, study of the physical and mechanical characteristics of salt rock under different temperature conditions is essential to ensure the integrity of the salt rock repository and the safe isolation of nuclear wastes from the biosphere. Through a series of physical and mechanical tests on thenardite salt rock at different temperatures (ranging from 20°C to 240°C), it is found that the mechanical parameters have different reactions to a changing temperature. Tests show that the ultrasonic velocity of samples decreases with temperature increase and both the uniaxial compressive strength and axial strain increase with temperature, whereas the tangent modulus E^sub t^ goes in an opposite direction. Meanwhile, the plastic strain increases gradually and strain-softening behavior of the samples becomes increasingly evident. In the pre-set angle shear tests, both the cohesion and internal friction angle increase with temperature. Results obtained in direct shear illustrate that both the peak shear strength and the ultimate shear strength increase with temperature. We conclude that the behavior of thenardite salt rock at high temperatures is still advantageous to the integrity of salt rock repository, assuring the safe isolation of nuclear wastes from the biosphere.[PUBLICATION ABSTRACT]
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0723-2632
1434-453X
DOI:10.1007/s00603-005-0067-2