Trapping Structural Coloration by a Bioinspired Gyroid Microstructure in Solid State

In theory, gyroid photonic crystals in butterfly wings exhibit advanced optical properties as a result of their highly interconnected microstructures. Because of the difficulties in synthesizing artificial gyroid materials having periodicity corresponding to visible wavelengths, human-made visible g...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 12; no. 1; pp. 485 - 493
Main Authors Lin, En-Li, Hsu, Wei-Lun, Chiang, Yeo-Wan
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 23.01.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In theory, gyroid photonic crystals in butterfly wings exhibit advanced optical properties as a result of their highly interconnected microstructures. Because of the difficulties in synthesizing artificial gyroid materials having periodicity corresponding to visible wavelengths, human-made visible gyroid photonic crystals are still unachievable by self-assembly. In this study, we develop a physical approachtrapping of structural coloration (TOSC)through which the visible structural coloration of an expanded gyroid lattice in a solvated state can be preserved in the solid state, thereby allowing the fabrication of visible-wavelength gyroid photonic crystals. Through control over the diffusivity and diffusive distance for solvent evaporation, the single-molecular-weight gyroid block copolymer photonic crystal can exhibit desired structural coloration in the solid state without the need to introduce any additives, namely, evapochromism. Also, greatly enhanced reflectivity is observed arising from the formation of porous gyroid nanochannels, similar to those in butterfly wings. As a result, TOSC facilitates the fabrication of the human-made solid gyroid photonic crystal featuring tunable and switchable structural coloration without the synthesis to alter the molecular weight. It appears to be applicable in the fields of optical communication, energy, light-emission, sensors, and displays.
AbstractList In theory, gyroid photonic crystals in butterfly wings exhibit advanced optical properties as a result of their highly interconnected microstructures. Because of the difficulties in synthesizing artificial gyroid materials having periodicity corresponding to visible wavelengths, human-made visible gyroid photonic crystals are still unachievable by self-assembly. In this study, we develop a physical approachtrapping of structural coloration (TOSC)through which the visible structural coloration of an expanded gyroid lattice in a solvated state can be preserved in the solid state, thereby allowing the fabrication of visible-wavelength gyroid photonic crystals. Through control over the diffusivity and diffusive distance for solvent evaporation, the single-molecular-weight gyroid block copolymer photonic crystal can exhibit desired structural coloration in the solid state without the need to introduce any additives, namely, evapochromism. Also, greatly enhanced reflectivity is observed arising from the formation of porous gyroid nanochannels, similar to those in butterfly wings. As a result, TOSC facilitates the fabrication of the human-made solid gyroid photonic crystal featuring tunable and switchable structural coloration without the synthesis to alter the molecular weight. It appears to be applicable in the fields of optical communication, energy, light-emission, sensors, and displays.
In theory, gyroid photonic crystals in butterfly wings exhibit advanced optical properties as a result of their highly interconnected microstructures. Because of the difficulties in synthesizing artificial gyroid materials having periodicity corresponding to visible wavelengths, human-made visible gyroid photonic crystals are still unachievable by self-assembly. In this study, we develop a physical approach-trapping of structural coloration (TOSC)-through which the visible structural coloration of an expanded gyroid lattice in a solvated state can be preserved in the solid state, thereby allowing the fabrication of visible-wavelength gyroid photonic crystals. Through control over the diffusivity and diffusive distance for solvent evaporation, the single-molecular-weight gyroid block copolymer photonic crystal can exhibit desired structural coloration in the solid state without the need to introduce any additives, namely, evapochromism. Also, greatly enhanced reflectivity is observed arising from the formation of porous gyroid nanochannels, similar to those in butterfly wings. As a result, TOSC facilitates the fabrication of the human-made solid gyroid photonic crystal featuring tunable and switchable structural coloration without the synthesis to alter the molecular weight. It appears to be applicable in the fields of optical communication, energy, light-emission, sensors, and displays.
Author Lin, En-Li
Hsu, Wei-Lun
Chiang, Yeo-Wan
AuthorAffiliation Department of Materials and Optoelectronic Science
AuthorAffiliation_xml – name: Department of Materials and Optoelectronic Science
Author_xml – sequence: 1
  givenname: En-Li
  surname: Lin
  fullname: Lin, En-Li
– sequence: 2
  givenname: Wei-Lun
  surname: Hsu
  fullname: Hsu, Wei-Lun
– sequence: 3
  givenname: Yeo-Wan
  orcidid: 0000-0002-5409-102X
  surname: Chiang
  fullname: Chiang, Yeo-Wan
  email: ywchiang@mail.nsysu.edu.tw
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29240399$$D View this record in MEDLINE/PubMed
BookMark eNp1kL1PwzAQxS1URD9gZkMekVBaO1-OR6igIBUxtEhs1iV2kKvUDnYy9L_HVUM3pjudfu_d3ZuikbFGIXRLyZySmC6g8gaMnbOSMELZBZpQnuQRKfKv0bnP6BhNvd8RkrGC5VdoHPM4JQnnE7TdOmhbbb7xpnN91fUOGry0jXXQaWtwecCAn7TVxrfaKYlXB2e1xO-6ctYPEoW1wRvbhPmmg05do8saGq9uhjpDny_P2-VrtP5YvS0f1xGE3V1EATKeJ1BKxSktqrxmpKxJVtZcparmiYpBFiQJE6hkmhNVlJJluUyDKs55MkP3J9_W2Z9e-U7sta9U04BRtveCcsZYkRUsDujihB7P9k7VonV6D-4gKBHHKMUQpRiiDIq7wbwv90qe-b_sAvBwAoJS7GzvTPj1X7tf9HqCSg
CitedBy_id crossref_primary_10_1021_acsami_3c06946
crossref_primary_10_1021_acsmacrolett_1c00520
crossref_primary_10_3390_cryst8080330
crossref_primary_10_1080_15583724_2023_2245022
crossref_primary_10_1016_j_giant_2023_100225
crossref_primary_10_1016_j_nantod_2020_100936
crossref_primary_10_1038_s41598_023_39291_3
crossref_primary_10_3390_polym12020465
crossref_primary_10_1016_j_cej_2021_132273
crossref_primary_10_1021_acsmacrolett_9b00966
crossref_primary_10_1002_chem_202300538
crossref_primary_10_1103_PhysRevMaterials_8_020302
crossref_primary_10_1021_acs_macromol_2c01585
crossref_primary_10_1016_j_cossms_2018_10_001
crossref_primary_10_3390_app8112104
crossref_primary_10_1021_acs_macromol_0c00639
crossref_primary_10_1002_smll_202307487
crossref_primary_10_1039_D3PY00113J
crossref_primary_10_1016_j_matchemphys_2022_126256
crossref_primary_10_1039_D0TC04561F
crossref_primary_10_1021_acs_macromol_2c00669
crossref_primary_10_1002_adfm_201804628
crossref_primary_10_1039_C9TC06135E
crossref_primary_10_3390_molecules23092242
crossref_primary_10_1039_D2NA00075J
crossref_primary_10_1021_acsami_2c10338
crossref_primary_10_1021_acsnano_0c07898
crossref_primary_10_1016_j_colsurfa_2022_128485
crossref_primary_10_1021_acs_macromol_8b01661
crossref_primary_10_1073_pnas_2009162117
crossref_primary_10_1002_adom_202100519
crossref_primary_10_1021_acs_macromol_0c02272
crossref_primary_10_1016_j_polymer_2023_125694
crossref_primary_10_1080_14686996_2022_2156256
crossref_primary_10_1002_adfm_201802585
crossref_primary_10_1021_acs_analchem_8b00326
crossref_primary_10_1021_acs_macromol_2c01643
crossref_primary_10_1016_j_cej_2024_150969
crossref_primary_10_1002_ange_202117275
crossref_primary_10_1021_acsmacrolett_1c00656
crossref_primary_10_1002_adom_201800485
crossref_primary_10_1016_j_eurpolymj_2019_04_037
crossref_primary_10_1515_zna_2023_0179
crossref_primary_10_1002_pi_6264
crossref_primary_10_1021_acs_macromol_9b01829
crossref_primary_10_1002_marc_202400093
crossref_primary_10_3390_cryst13071010
crossref_primary_10_1039_D2SM00635A
crossref_primary_10_1002_anie_202117275
crossref_primary_10_1515_nanoph_2021_0644
crossref_primary_10_1021_acs_macromol_8b00751
Cites_doi 10.1016/j.matpr.2014.09.023
10.1016/j.polymer.2003.08.011
10.1002/adom.201500177
10.1002/adma.200900067
10.1098/rsfs.2011.0082
10.1021/acsphotonics.6b00293
10.1073/pnas.1213055109
10.1021/acsnano.7b00032
10.1103/PhysRevLett.100.013901
10.1039/c1cc11637a
10.1038/nmat2032
10.1038/nature01941
10.1021/ja9021478
10.1103/PhysRevB.65.165123
10.1002/adma.201103610
10.1021/cr900159v
10.1002/adma.201301909
10.1126/science.133.3454.695-a
10.1126/sciadv.1600084
10.1002/anie.201103505
10.1002/adma.201305618
10.1021/ma9903207
10.1088/1464-4258/2/6/201
10.1039/C4CC05072J
10.1021/ma500517e
10.1021/acs.macromol.5b00744
10.1038/nmat1254
10.1038/nnano.2007.152
10.1063/1.882522
10.1002/adom.201400333
10.1021/nn302949n
10.1073/pnas.1511354112
10.1098/rsif.2007.1065
10.1002/adma.200902852
10.1021/cm702458p
10.1039/C4CS00517A
10.1002/adma.200290018
10.1073/pnas.1204383109
10.1002/adma.201303456
10.1038/ncomms7368
10.1038/nphoton.2007.2
10.1021/ma0498621
10.1073/pnas.0909616107
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society
DBID NPM
AAYXX
CITATION
7X8
DOI 10.1021/acsnano.7b07017
DatabaseName PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 493
ExternalDocumentID 10_1021_acsnano_7b07017
29240399
b325528540
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
4.4
5VS
6J9
AAHBH
ABJNI
ABQRX
ACBEA
ACGFO
ADHLV
AHGAQ
BAANH
CUPRZ
GGK
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-a399t-1aa5963abde9118c6f70bf05bf9e4ef93e2ad80305bacd460e8bd756d49632693
IEDL.DBID ACS
ISSN 1936-0851
IngestDate Fri Aug 16 00:50:13 EDT 2024
Fri Aug 23 00:25:32 EDT 2024
Sat Sep 28 08:37:22 EDT 2024
Thu Aug 27 13:42:12 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords block copolymers
structural coloration
photonic crystals
gyroid
trapping
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a399t-1aa5963abde9118c6f70bf05bf9e4ef93e2ad80305bacd460e8bd756d49632693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5409-102X
PMID 29240399
PQID 1977785872
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_1977785872
crossref_primary_10_1021_acsnano_7b07017
pubmed_primary_29240399
acs_journals_10_1021_acsnano_7b07017
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2018-01-23
PublicationDateYYYYMMDD 2018-01-23
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-23
  day: 23
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – ident: ref8/cit8
  doi: 10.1016/j.matpr.2014.09.023
– ident: ref30/cit30
  doi: 10.1016/j.polymer.2003.08.011
– ident: ref28/cit28
  doi: 10.1002/adom.201500177
– ident: ref21/cit21
  doi: 10.1002/adma.200900067
– ident: ref7/cit7
  doi: 10.1098/rsfs.2011.0082
– ident: ref41/cit41
  doi: 10.1021/acsphotonics.6b00293
– ident: ref35/cit35
  doi: 10.1073/pnas.1213055109
– ident: ref37/cit37
  doi: 10.1021/acsnano.7b00032
– ident: ref12/cit12
  doi: 10.1103/PhysRevLett.100.013901
– ident: ref18/cit18
  doi: 10.1039/c1cc11637a
– ident: ref20/cit20
  doi: 10.1038/nmat2032
– ident: ref3/cit3
  doi: 10.1038/nature01941
– ident: ref44/cit44
– ident: ref33/cit33
  doi: 10.1021/ja9021478
– ident: ref11/cit11
  doi: 10.1103/PhysRevB.65.165123
– ident: ref22/cit22
  doi: 10.1002/adma.201103610
– ident: ref43/cit43
  doi: 10.1021/cr900159v
– ident: ref14/cit14
  doi: 10.1002/adma.201301909
– ident: ref1/cit1
  doi: 10.1126/science.133.3454.695-a
– ident: ref40/cit40
  doi: 10.1126/sciadv.1600084
– ident: ref19/cit19
  doi: 10.1002/anie.201103505
– ident: ref23/cit23
  doi: 10.1002/adma.201305618
– ident: ref31/cit31
  doi: 10.1021/ma9903207
– ident: ref2/cit2
  doi: 10.1088/1464-4258/2/6/201
– ident: ref25/cit25
  doi: 10.1039/C4CC05072J
– ident: ref36/cit36
  doi: 10.1021/ma500517e
– ident: ref27/cit27
  doi: 10.1021/acs.macromol.5b00744
– ident: ref32/cit32
  doi: 10.1038/nmat1254
– ident: ref15/cit15
  doi: 10.1038/nnano.2007.152
– ident: ref29/cit29
  doi: 10.1063/1.882522
– ident: ref38/cit38
  doi: 10.1002/adom.201400333
– ident: ref34/cit34
  doi: 10.1021/nn302949n
– ident: ref10/cit10
  doi: 10.1073/pnas.1511354112
– ident: ref5/cit5
  doi: 10.1098/rsif.2007.1065
– ident: ref13/cit13
  doi: 10.1002/adma.200902852
– ident: ref16/cit16
  doi: 10.1021/cm702458p
– ident: ref26/cit26
  doi: 10.1039/C4CS00517A
– ident: ref39/cit39
  doi: 10.1002/adma.200290018
– ident: ref17/cit17
  doi: 10.1073/pnas.1204383109
– ident: ref24/cit24
  doi: 10.1002/adma.201303456
– ident: ref9/cit9
  doi: 10.1038/ncomms7368
– ident: ref4/cit4
  doi: 10.1038/nphoton.2007.2
– ident: ref42/cit42
  doi: 10.1021/ma0498621
– ident: ref6/cit6
  doi: 10.1073/pnas.0909616107
SSID ssj0057876
Score 2.510104
Snippet In theory, gyroid photonic crystals in butterfly wings exhibit advanced optical properties as a result of their highly interconnected microstructures. Because...
SourceID proquest
crossref
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 485
Title Trapping Structural Coloration by a Bioinspired Gyroid Microstructure in Solid State
URI http://dx.doi.org/10.1021/acsnano.7b07017
https://www.ncbi.nlm.nih.gov/pubmed/29240399
https://search.proquest.com/docview/1977785872
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgXODAvpRNRuqBS0riJHZyhIpSIcGlrdRb5BVVIAeR9lC-nnGSslUVXKN4ZI1nedEbvyDUcpJr1HGGUlLqRSERXpoY4SnD0kSEVDJeqn0-0t4wuh_Foy-x6N8MPgmuuCwst3mbCYjOgK2iNcIgNRwK6vTnRdfFHa0IZPhABhTxqeKzYMC1IVn8bENLsGXZY7pb1XRWUUoTutGS5_Z0ItryfVG48e_tb6PNGmni6yo0dtCKtrto45v-4B4aQKdy-gxPuF_KyDoJDtyBcliFBRYzzPHNOB9bx8drhe9mb_lY4Qc3xVfUSzQeW9zPX-B5iVz30bB7O-j0vPo3Cx4HdDLxAs5jSEMulIbKl0hqmC-MHwuT6kibNNSEq8QVBsGliqivE6FYTFUEqwhNwwPUsLnVRwhLqoh2t7gII5ExjPuhCk1MDdWGCB03UQv8kdVpUmQlA06CrHZSVjupiS7nh5O9VqIby1-9mB9eBonh2A5udT4F24BsWRInjDTRYXWqn8ZI6mQI0_T4f_s5QeuAk9zQn0fCU9QA_-ozwCITcV5G4QfORtoa
link.rule.ids 315,783,787,2772,27088,27936,27937,57066,57116
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xHIAD-1JWI_XAJSV1Ejs5QkUpWyXUVuIW2bGNKlCCSDnA1zNO0rIJCa5WPHJmfdGMXwDqlnKN2Z5hkjDm-B6VThQa6SjDo1B6LOGiYPvsss7Av7wL7qbAHd-FwUPkKCkvmvgf7ALNY1xLRZo1uEQnbfJpmA04lksLhlq9ce617sfKPjJ-JyOYmJD5_BBgq1GSf61Gv0DMotS0l-B2cshiwuSh8TKSjeTtG3_jf95iGRYr3ElOSkdZgSmdrsLCJzbCNehj3bJsDfekV5DKWkIO0sLkWDoJka9EkNNhNkxtd14rcv76nA0VubEzfXm1RZNhSnrZI64XOHYdBu2zfqvjVD9dcARilZHTFCLAoBRSacyDYcIMd6VxA2ki7WsTeZoKFdo0IUWifObqUCoeMOXjLsoibwNm0izVW0ASpqi2d7oop74xXLie8kzADNOGSh3UoI76iKugyeOiH06bcaWkuFJSDY7GNoqfSgqO3x89HNswxjCxvQ-R6uwFZSPO5WEQclqDzdK4E2E0sqSEUbT9t_McwFynf3MdX190r3ZgHhGUHQd0qLcLM6hrvYcoZST3C8d8B5Mk4n8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFH64gOjBfRnXCB68dJymbdIedXTcRRgHvJWkSWRQWrHjQX-9L2lncEHQa2ge6ctbvvIlXwH2rOQas5xhljHmhQGVXhIb6SnDk1gGLOPCqX3esLNeeHEf3deXwuxdGFxEiZZKR-LbrH5WplYY8A9wPBd50eQSA9Xn4zAZcd-Rs4ft7rD-2hBkFZeM38oIKEaCPj8M2I6UlV870i8w07Wbzhz0Rgt1p0wem68D2czev2k4_vdN5mG2xp_ksAqYBRjT-SLMfFIlXII77F9WteGBdJ24rBXmIG0sklWwEPlGBDnqF_3csvRakdO3l6KvyLU921fWUzTp56RbPOG4w7PL0Ouc3LXPvPrnC55AzDLwfCEiTE4hlcZ6GGfM8JY0rUiaRIfaJIGmQsW2XEiRqZC1dCwVj5gKcRZlSbACE3mR6zUgGVNU27tdlNPQGC5agQpMxAzThkodNWAP_ZHWyVOmjhenflo7Ka2d1ID94T6lz5UUx--P7g73McV0sRyIyHXxirYR7_I4ijltwGq1wSNjNLHihEmy_rf17MDU7XEnvTq_udyAaQRS9lSgR4NNmEBX6y0EKwO57WLzA-EK5Pk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trapping+Structural+Coloration+by+a+Bioinspired+Gyroid+Microstructure+in+Solid+State&rft.jtitle=ACS+nano&rft.au=Lin%2C+En-Li&rft.au=Hsu%2C+Wei-Lun&rft.au=Chiang%2C+Yeo-Wan&rft.date=2018-01-23&rft.pub=American+Chemical+Society&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=12&rft.issue=1&rft.spage=485&rft.epage=493&rft_id=info:doi/10.1021%2Facsnano.7b07017&rft.externalDocID=b325528540
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon