Trapping Structural Coloration by a Bioinspired Gyroid Microstructure in Solid State
In theory, gyroid photonic crystals in butterfly wings exhibit advanced optical properties as a result of their highly interconnected microstructures. Because of the difficulties in synthesizing artificial gyroid materials having periodicity corresponding to visible wavelengths, human-made visible g...
Saved in:
Published in | ACS nano Vol. 12; no. 1; pp. 485 - 493 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
23.01.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In theory, gyroid photonic crystals in butterfly wings exhibit advanced optical properties as a result of their highly interconnected microstructures. Because of the difficulties in synthesizing artificial gyroid materials having periodicity corresponding to visible wavelengths, human-made visible gyroid photonic crystals are still unachievable by self-assembly. In this study, we develop a physical approachtrapping of structural coloration (TOSC)through which the visible structural coloration of an expanded gyroid lattice in a solvated state can be preserved in the solid state, thereby allowing the fabrication of visible-wavelength gyroid photonic crystals. Through control over the diffusivity and diffusive distance for solvent evaporation, the single-molecular-weight gyroid block copolymer photonic crystal can exhibit desired structural coloration in the solid state without the need to introduce any additives, namely, evapochromism. Also, greatly enhanced reflectivity is observed arising from the formation of porous gyroid nanochannels, similar to those in butterfly wings. As a result, TOSC facilitates the fabrication of the human-made solid gyroid photonic crystal featuring tunable and switchable structural coloration without the synthesis to alter the molecular weight. It appears to be applicable in the fields of optical communication, energy, light-emission, sensors, and displays. |
---|---|
AbstractList | In theory, gyroid photonic crystals in butterfly wings exhibit advanced optical properties as a result of their highly interconnected microstructures. Because of the difficulties in synthesizing artificial gyroid materials having periodicity corresponding to visible wavelengths, human-made visible gyroid photonic crystals are still unachievable by self-assembly. In this study, we develop a physical approachtrapping of structural coloration (TOSC)through which the visible structural coloration of an expanded gyroid lattice in a solvated state can be preserved in the solid state, thereby allowing the fabrication of visible-wavelength gyroid photonic crystals. Through control over the diffusivity and diffusive distance for solvent evaporation, the single-molecular-weight gyroid block copolymer photonic crystal can exhibit desired structural coloration in the solid state without the need to introduce any additives, namely, evapochromism. Also, greatly enhanced reflectivity is observed arising from the formation of porous gyroid nanochannels, similar to those in butterfly wings. As a result, TOSC facilitates the fabrication of the human-made solid gyroid photonic crystal featuring tunable and switchable structural coloration without the synthesis to alter the molecular weight. It appears to be applicable in the fields of optical communication, energy, light-emission, sensors, and displays. In theory, gyroid photonic crystals in butterfly wings exhibit advanced optical properties as a result of their highly interconnected microstructures. Because of the difficulties in synthesizing artificial gyroid materials having periodicity corresponding to visible wavelengths, human-made visible gyroid photonic crystals are still unachievable by self-assembly. In this study, we develop a physical approach-trapping of structural coloration (TOSC)-through which the visible structural coloration of an expanded gyroid lattice in a solvated state can be preserved in the solid state, thereby allowing the fabrication of visible-wavelength gyroid photonic crystals. Through control over the diffusivity and diffusive distance for solvent evaporation, the single-molecular-weight gyroid block copolymer photonic crystal can exhibit desired structural coloration in the solid state without the need to introduce any additives, namely, evapochromism. Also, greatly enhanced reflectivity is observed arising from the formation of porous gyroid nanochannels, similar to those in butterfly wings. As a result, TOSC facilitates the fabrication of the human-made solid gyroid photonic crystal featuring tunable and switchable structural coloration without the synthesis to alter the molecular weight. It appears to be applicable in the fields of optical communication, energy, light-emission, sensors, and displays. |
Author | Lin, En-Li Hsu, Wei-Lun Chiang, Yeo-Wan |
AuthorAffiliation | Department of Materials and Optoelectronic Science |
AuthorAffiliation_xml | – name: Department of Materials and Optoelectronic Science |
Author_xml | – sequence: 1 givenname: En-Li surname: Lin fullname: Lin, En-Li – sequence: 2 givenname: Wei-Lun surname: Hsu fullname: Hsu, Wei-Lun – sequence: 3 givenname: Yeo-Wan orcidid: 0000-0002-5409-102X surname: Chiang fullname: Chiang, Yeo-Wan email: ywchiang@mail.nsysu.edu.tw |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29240399$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kL1PwzAQxS1URD9gZkMekVBaO1-OR6igIBUxtEhs1iV2kKvUDnYy9L_HVUM3pjudfu_d3ZuikbFGIXRLyZySmC6g8gaMnbOSMELZBZpQnuQRKfKv0bnP6BhNvd8RkrGC5VdoHPM4JQnnE7TdOmhbbb7xpnN91fUOGry0jXXQaWtwecCAn7TVxrfaKYlXB2e1xO-6ctYPEoW1wRvbhPmmg05do8saGq9uhjpDny_P2-VrtP5YvS0f1xGE3V1EATKeJ1BKxSktqrxmpKxJVtZcparmiYpBFiQJE6hkmhNVlJJluUyDKs55MkP3J9_W2Z9e-U7sta9U04BRtveCcsZYkRUsDujihB7P9k7VonV6D-4gKBHHKMUQpRiiDIq7wbwv90qe-b_sAvBwAoJS7GzvTPj1X7tf9HqCSg |
CitedBy_id | crossref_primary_10_1021_acsami_3c06946 crossref_primary_10_1021_acsmacrolett_1c00520 crossref_primary_10_3390_cryst8080330 crossref_primary_10_1080_15583724_2023_2245022 crossref_primary_10_1016_j_giant_2023_100225 crossref_primary_10_1016_j_nantod_2020_100936 crossref_primary_10_1038_s41598_023_39291_3 crossref_primary_10_3390_polym12020465 crossref_primary_10_1016_j_cej_2021_132273 crossref_primary_10_1021_acsmacrolett_9b00966 crossref_primary_10_1002_chem_202300538 crossref_primary_10_1103_PhysRevMaterials_8_020302 crossref_primary_10_1021_acs_macromol_2c01585 crossref_primary_10_1016_j_cossms_2018_10_001 crossref_primary_10_3390_app8112104 crossref_primary_10_1021_acs_macromol_0c00639 crossref_primary_10_1002_smll_202307487 crossref_primary_10_1039_D3PY00113J crossref_primary_10_1016_j_matchemphys_2022_126256 crossref_primary_10_1039_D0TC04561F crossref_primary_10_1021_acs_macromol_2c00669 crossref_primary_10_1002_adfm_201804628 crossref_primary_10_1039_C9TC06135E crossref_primary_10_3390_molecules23092242 crossref_primary_10_1039_D2NA00075J crossref_primary_10_1021_acsami_2c10338 crossref_primary_10_1021_acsnano_0c07898 crossref_primary_10_1016_j_colsurfa_2022_128485 crossref_primary_10_1021_acs_macromol_8b01661 crossref_primary_10_1073_pnas_2009162117 crossref_primary_10_1002_adom_202100519 crossref_primary_10_1021_acs_macromol_0c02272 crossref_primary_10_1016_j_polymer_2023_125694 crossref_primary_10_1080_14686996_2022_2156256 crossref_primary_10_1002_adfm_201802585 crossref_primary_10_1021_acs_analchem_8b00326 crossref_primary_10_1021_acs_macromol_2c01643 crossref_primary_10_1016_j_cej_2024_150969 crossref_primary_10_1002_ange_202117275 crossref_primary_10_1021_acsmacrolett_1c00656 crossref_primary_10_1002_adom_201800485 crossref_primary_10_1016_j_eurpolymj_2019_04_037 crossref_primary_10_1515_zna_2023_0179 crossref_primary_10_1002_pi_6264 crossref_primary_10_1021_acs_macromol_9b01829 crossref_primary_10_1002_marc_202400093 crossref_primary_10_3390_cryst13071010 crossref_primary_10_1039_D2SM00635A crossref_primary_10_1002_anie_202117275 crossref_primary_10_1515_nanoph_2021_0644 crossref_primary_10_1021_acs_macromol_8b00751 |
Cites_doi | 10.1016/j.matpr.2014.09.023 10.1016/j.polymer.2003.08.011 10.1002/adom.201500177 10.1002/adma.200900067 10.1098/rsfs.2011.0082 10.1021/acsphotonics.6b00293 10.1073/pnas.1213055109 10.1021/acsnano.7b00032 10.1103/PhysRevLett.100.013901 10.1039/c1cc11637a 10.1038/nmat2032 10.1038/nature01941 10.1021/ja9021478 10.1103/PhysRevB.65.165123 10.1002/adma.201103610 10.1021/cr900159v 10.1002/adma.201301909 10.1126/science.133.3454.695-a 10.1126/sciadv.1600084 10.1002/anie.201103505 10.1002/adma.201305618 10.1021/ma9903207 10.1088/1464-4258/2/6/201 10.1039/C4CC05072J 10.1021/ma500517e 10.1021/acs.macromol.5b00744 10.1038/nmat1254 10.1038/nnano.2007.152 10.1063/1.882522 10.1002/adom.201400333 10.1021/nn302949n 10.1073/pnas.1511354112 10.1098/rsif.2007.1065 10.1002/adma.200902852 10.1021/cm702458p 10.1039/C4CS00517A 10.1002/adma.200290018 10.1073/pnas.1204383109 10.1002/adma.201303456 10.1038/ncomms7368 10.1038/nphoton.2007.2 10.1021/ma0498621 10.1073/pnas.0909616107 |
ContentType | Journal Article |
Copyright | Copyright © 2017 American Chemical Society |
Copyright_xml | – notice: Copyright © 2017 American Chemical Society |
DBID | NPM AAYXX CITATION 7X8 |
DOI | 10.1021/acsnano.7b07017 |
DatabaseName | PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 493 |
ExternalDocumentID | 10_1021_acsnano_7b07017 29240399 b325528540 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 4.4 5VS 6J9 AAHBH ABJNI ABQRX ACBEA ACGFO ADHLV AHGAQ BAANH CUPRZ GGK NPM AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-a399t-1aa5963abde9118c6f70bf05bf9e4ef93e2ad80305bacd460e8bd756d49632693 |
IEDL.DBID | ACS |
ISSN | 1936-0851 |
IngestDate | Fri Aug 16 00:50:13 EDT 2024 Fri Aug 23 00:25:32 EDT 2024 Sat Sep 28 08:37:22 EDT 2024 Thu Aug 27 13:42:12 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | block copolymers structural coloration photonic crystals gyroid trapping |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a399t-1aa5963abde9118c6f70bf05bf9e4ef93e2ad80305bacd460e8bd756d49632693 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5409-102X |
PMID | 29240399 |
PQID | 1977785872 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1977785872 crossref_primary_10_1021_acsnano_7b07017 pubmed_primary_29240399 acs_journals_10_1021_acsnano_7b07017 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2018-01-23 |
PublicationDateYYYYMMDD | 2018-01-23 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-23 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2018 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref8/cit8 doi: 10.1016/j.matpr.2014.09.023 – ident: ref30/cit30 doi: 10.1016/j.polymer.2003.08.011 – ident: ref28/cit28 doi: 10.1002/adom.201500177 – ident: ref21/cit21 doi: 10.1002/adma.200900067 – ident: ref7/cit7 doi: 10.1098/rsfs.2011.0082 – ident: ref41/cit41 doi: 10.1021/acsphotonics.6b00293 – ident: ref35/cit35 doi: 10.1073/pnas.1213055109 – ident: ref37/cit37 doi: 10.1021/acsnano.7b00032 – ident: ref12/cit12 doi: 10.1103/PhysRevLett.100.013901 – ident: ref18/cit18 doi: 10.1039/c1cc11637a – ident: ref20/cit20 doi: 10.1038/nmat2032 – ident: ref3/cit3 doi: 10.1038/nature01941 – ident: ref44/cit44 – ident: ref33/cit33 doi: 10.1021/ja9021478 – ident: ref11/cit11 doi: 10.1103/PhysRevB.65.165123 – ident: ref22/cit22 doi: 10.1002/adma.201103610 – ident: ref43/cit43 doi: 10.1021/cr900159v – ident: ref14/cit14 doi: 10.1002/adma.201301909 – ident: ref1/cit1 doi: 10.1126/science.133.3454.695-a – ident: ref40/cit40 doi: 10.1126/sciadv.1600084 – ident: ref19/cit19 doi: 10.1002/anie.201103505 – ident: ref23/cit23 doi: 10.1002/adma.201305618 – ident: ref31/cit31 doi: 10.1021/ma9903207 – ident: ref2/cit2 doi: 10.1088/1464-4258/2/6/201 – ident: ref25/cit25 doi: 10.1039/C4CC05072J – ident: ref36/cit36 doi: 10.1021/ma500517e – ident: ref27/cit27 doi: 10.1021/acs.macromol.5b00744 – ident: ref32/cit32 doi: 10.1038/nmat1254 – ident: ref15/cit15 doi: 10.1038/nnano.2007.152 – ident: ref29/cit29 doi: 10.1063/1.882522 – ident: ref38/cit38 doi: 10.1002/adom.201400333 – ident: ref34/cit34 doi: 10.1021/nn302949n – ident: ref10/cit10 doi: 10.1073/pnas.1511354112 – ident: ref5/cit5 doi: 10.1098/rsif.2007.1065 – ident: ref13/cit13 doi: 10.1002/adma.200902852 – ident: ref16/cit16 doi: 10.1021/cm702458p – ident: ref26/cit26 doi: 10.1039/C4CS00517A – ident: ref39/cit39 doi: 10.1002/adma.200290018 – ident: ref17/cit17 doi: 10.1073/pnas.1204383109 – ident: ref24/cit24 doi: 10.1002/adma.201303456 – ident: ref9/cit9 doi: 10.1038/ncomms7368 – ident: ref4/cit4 doi: 10.1038/nphoton.2007.2 – ident: ref42/cit42 doi: 10.1021/ma0498621 – ident: ref6/cit6 doi: 10.1073/pnas.0909616107 |
SSID | ssj0057876 |
Score | 2.510104 |
Snippet | In theory, gyroid photonic crystals in butterfly wings exhibit advanced optical properties as a result of their highly interconnected microstructures. Because... |
SourceID | proquest crossref pubmed acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 485 |
Title | Trapping Structural Coloration by a Bioinspired Gyroid Microstructure in Solid State |
URI | http://dx.doi.org/10.1021/acsnano.7b07017 https://www.ncbi.nlm.nih.gov/pubmed/29240399 https://search.proquest.com/docview/1977785872 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgXODAvpRNRuqBS0riJHZyhIpSIcGlrdRb5BVVIAeR9lC-nnGSslUVXKN4ZI1nedEbvyDUcpJr1HGGUlLqRSERXpoY4SnD0kSEVDJeqn0-0t4wuh_Foy-x6N8MPgmuuCwst3mbCYjOgK2iNcIgNRwK6vTnRdfFHa0IZPhABhTxqeKzYMC1IVn8bENLsGXZY7pb1XRWUUoTutGS5_Z0ItryfVG48e_tb6PNGmni6yo0dtCKtrto45v-4B4aQKdy-gxPuF_KyDoJDtyBcliFBRYzzPHNOB9bx8drhe9mb_lY4Qc3xVfUSzQeW9zPX-B5iVz30bB7O-j0vPo3Cx4HdDLxAs5jSEMulIbKl0hqmC-MHwuT6kibNNSEq8QVBsGliqivE6FYTFUEqwhNwwPUsLnVRwhLqoh2t7gII5ExjPuhCk1MDdWGCB03UQv8kdVpUmQlA06CrHZSVjupiS7nh5O9VqIby1-9mB9eBonh2A5udT4F24BsWRInjDTRYXWqn8ZI6mQI0_T4f_s5QeuAk9zQn0fCU9QA_-ozwCITcV5G4QfORtoa |
link.rule.ids | 315,783,787,2772,27088,27936,27937,57066,57116 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xHIAD-1JWI_XAJSV1Ejs5QkUpWyXUVuIW2bGNKlCCSDnA1zNO0rIJCa5WPHJmfdGMXwDqlnKN2Z5hkjDm-B6VThQa6SjDo1B6LOGiYPvsss7Av7wL7qbAHd-FwUPkKCkvmvgf7ALNY1xLRZo1uEQnbfJpmA04lksLhlq9ce617sfKPjJ-JyOYmJD5_BBgq1GSf61Gv0DMotS0l-B2cshiwuSh8TKSjeTtG3_jf95iGRYr3ElOSkdZgSmdrsLCJzbCNehj3bJsDfekV5DKWkIO0sLkWDoJka9EkNNhNkxtd14rcv76nA0VubEzfXm1RZNhSnrZI64XOHYdBu2zfqvjVD9dcARilZHTFCLAoBRSacyDYcIMd6VxA2ki7WsTeZoKFdo0IUWifObqUCoeMOXjLsoibwNm0izVW0ASpqi2d7oop74xXLie8kzADNOGSh3UoI76iKugyeOiH06bcaWkuFJSDY7GNoqfSgqO3x89HNswxjCxvQ-R6uwFZSPO5WEQclqDzdK4E2E0sqSEUbT9t_McwFynf3MdX190r3ZgHhGUHQd0qLcLM6hrvYcoZST3C8d8B5Mk4n8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFH64gOjBfRnXCB68dJymbdIedXTcRRgHvJWkSWRQWrHjQX-9L2lncEHQa2ge6ctbvvIlXwH2rOQas5xhljHmhQGVXhIb6SnDk1gGLOPCqX3esLNeeHEf3deXwuxdGFxEiZZKR-LbrH5WplYY8A9wPBd50eQSA9Xn4zAZcd-Rs4ft7rD-2hBkFZeM38oIKEaCPj8M2I6UlV870i8w07Wbzhz0Rgt1p0wem68D2czev2k4_vdN5mG2xp_ksAqYBRjT-SLMfFIlXII77F9WteGBdJ24rBXmIG0sklWwEPlGBDnqF_3csvRakdO3l6KvyLU921fWUzTp56RbPOG4w7PL0Ouc3LXPvPrnC55AzDLwfCEiTE4hlcZ6GGfM8JY0rUiaRIfaJIGmQsW2XEiRqZC1dCwVj5gKcRZlSbACE3mR6zUgGVNU27tdlNPQGC5agQpMxAzThkodNWAP_ZHWyVOmjhenflo7Ka2d1ID94T6lz5UUx--P7g73McV0sRyIyHXxirYR7_I4ijltwGq1wSNjNLHihEmy_rf17MDU7XEnvTq_udyAaQRS9lSgR4NNmEBX6y0EKwO57WLzA-EK5Pk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trapping+Structural+Coloration+by+a+Bioinspired+Gyroid+Microstructure+in+Solid+State&rft.jtitle=ACS+nano&rft.au=Lin%2C+En-Li&rft.au=Hsu%2C+Wei-Lun&rft.au=Chiang%2C+Yeo-Wan&rft.date=2018-01-23&rft.pub=American+Chemical+Society&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=12&rft.issue=1&rft.spage=485&rft.epage=493&rft_id=info:doi/10.1021%2Facsnano.7b07017&rft.externalDocID=b325528540 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |