Discovery of a Sheeted Dike Complex in the Northern Yangtze Craton and Its Implications for Craton Evolution
The Miaowan (庙湾) ophiolite is a highly dismembered ophiolitic complex cropping out near the northern margin of the Yangtze craton. The rocks of this complex consist of, from bottom to top, harzburgite tectonite locally containing podiform chromite, dunite, layered and isotropic gabbro, a sheeted dik...
Saved in:
Published in | Journal of earth science (Wuhan, China) Vol. 23; no. 5; pp. 676 - 695 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
China University of Geosciences
China University of Geosciences
01.10.2012
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The Miaowan (庙湾) ophiolite is a highly dismembered ophiolitic complex cropping out near the northern margin of the Yangtze craton. The rocks of this complex consist of, from bottom to top, harzburgite tectonite locally containing podiform chromite, dunite, layered and isotropic gabbro, a sheeted dike complex (SDC), meta-pillow lavas with chert pods and layers, and tectonically intercalated marble. The SDC is a very important and significant part of the Miaowan ophiolitic sequence, and grades downward into gabbro and ultramafic rocks, and upward into meta-pillow lavas. Some dikes preserve one-way chilled margins, typical of extensional ophiolitic settings, whereas most preserve dou-ble chilled margins, in cases where the chilling direction can be determined. The SDC is mainly com-posed of meta-diabase (dolerite), meta-plagiogranite, and small amounts of meta-gabbro and ultramafic rocks. LA-ICP-MS zircon dating yields an upper intercept age of 1 026±79 Ma for one meta-plagiogranite, 1 043±23 Ma for a second meta-plagiogranite and I 096±32 Ma for one meta-gabbro at the bottom of the SDC, suggesting formation of the SDC at circa 1 026-1 096 Ma, consistent with the recently determined formation age of the Miaowan ophiolite. Sparse geochemical data on the meta-diabase indicate that the protolith was a sub-alkaline, low-potassium tholeiite similar to mid-ocean ridge basalt (MORB). The chondrite-normalized rare earth element (REE) patterns of the meta-diabase are generally flat ((La/Yb)N=0.56-0.94), with a slight depletion in LREE, but no obvious Eu anomalies. Given that the meta-plagiogranites show evidence of formation in a suprasubduction zone environment, we suggest that the basalts were originally island arc tholeiites, perhaps formed in an extensional forearc setting. The geochemistry of the meta-diabase and plagiogranite from the sheeted dikes, together with regional relationships, all agree with the previous interpretations that the Miaowan ophiolite formed in a suprasubduction zone setting. |
---|---|
Bibliography: | Hao Deng,Timothy M Kusky, Lu Wang,Songbai Peng ,Xingfu Jiang , Junpeng Wang, Songjie Wang(1 Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074, China; State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China;2Three Gorges Research Center for Geo-hazard, Ministry of Education, China University of Geosciences, Wuhan 430074, China; State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China;3 Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074, China; Three Gorges Research Center for Geo-hazard, Ministry of Education, China University of Geosciences, Wuhan 430074, China;4 Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074, China; State Key Laboratory of Geological Processes and Mineral Resources, China University of Geoseiences, Wuhan 430074, China) ophiolite, sheeted dike complex, Yangtze craton, Rodinia. The Miaowan (庙湾) ophiolite is a highly dismembered ophiolitic complex cropping out near the northern margin of the Yangtze craton. The rocks of this complex consist of, from bottom to top, harzburgite tectonite locally containing podiform chromite, dunite, layered and isotropic gabbro, a sheeted dike complex (SDC), meta-pillow lavas with chert pods and layers, and tectonically intercalated marble. The SDC is a very important and significant part of the Miaowan ophiolitic sequence, and grades downward into gabbro and ultramafic rocks, and upward into meta-pillow lavas. Some dikes preserve one-way chilled margins, typical of extensional ophiolitic settings, whereas most preserve dou-ble chilled margins, in cases where the chilling direction can be determined. The SDC is mainly com-posed of meta-diabase (dolerite), meta-plagiogranite, and small amounts of meta-gabbro and ultramafic rocks. LA-ICP-MS zircon dating yields an upper intercept age of 1 026±79 Ma for one meta-plagiogranite, 1 043±23 Ma for a second meta-plagiogranite and I 096±32 Ma for one meta-gabbro at the bottom of the SDC, suggesting formation of the SDC at circa 1 026-1 096 Ma, consistent with the recently determined formation age of the Miaowan ophiolite. Sparse geochemical data on the meta-diabase indicate that the protolith was a sub-alkaline, low-potassium tholeiite similar to mid-ocean ridge basalt (MORB). The chondrite-normalized rare earth element (REE) patterns of the meta-diabase are generally flat ((La/Yb)N=0.56-0.94), with a slight depletion in LREE, but no obvious Eu anomalies. Given that the meta-plagiogranites show evidence of formation in a suprasubduction zone environment, we suggest that the basalts were originally island arc tholeiites, perhaps formed in an extensional forearc setting. The geochemistry of the meta-diabase and plagiogranite from the sheeted dikes, together with regional relationships, all agree with the previous interpretations that the Miaowan ophiolite formed in a suprasubduction zone setting. 42-1788/P SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1674-487X 1867-111X |
DOI: | 10.1007/s12583-012-0287-9 |