High-Resolution Organic Light-Emitting Diodes Patterned via Contact Printing
In this study, we report a contact printing technique that uses polyurethane-acrylate (PUA) polymers as the printing stamps to pattern electroluminescent layers of organic light emitting diodes (OLEDs). We demonstrate that electroluminescent thin films can be printed with high uniformity and resolut...
Saved in:
Published in | ACS applied materials & interfaces Vol. 8; no. 26; pp. 16809 - 16815 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
06.07.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this study, we report a contact printing technique that uses polyurethane-acrylate (PUA) polymers as the printing stamps to pattern electroluminescent layers of organic light emitting diodes (OLEDs). We demonstrate that electroluminescent thin films can be printed with high uniformity and resolution. We also show that the performance of the printed devices can be improved via postprinting thermal annealing, and that the external quantum efficiency of the printed devices is comparable with the efficiency of the vacuum-deposited OLEDs. Our results suggest that the PUA-based contact printing can be used as an alternative to the traditional shadow mask deposition, permitting manufacturing of OLED displays with the resolution up to the diffraction limit of visible-light emission. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.6b05286 |