Optical Properties of Low-Loss Ag Films and Nanostructures on Transparent Substrates

We demonstrate the fabrication of a low-loss single-crystalline Ag nanostructure deposited on transparent substrates. Our approach is based on an epitaxial growth technique in which a NaCl(001) substrate is used. The NaCl substrate is dissolved in water to allow the Ag film to be transferred onto th...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 10; no. 9; pp. 8333 - 8340
Main Authors Mori, Tomohiro, Mori, Takeshi, Fujii, Masamitsu, Tominari, Yukihiro, Otomo, Akira, Yamaguchi, Kenzo
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 07.03.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We demonstrate the fabrication of a low-loss single-crystalline Ag nanostructure deposited on transparent substrates. Our approach is based on an epitaxial growth technique in which a NaCl(001) substrate is used. The NaCl substrate is dissolved in water to allow the Ag film to be transferred onto the desired substrates. Focused ion beam milling is subsequently employed to pattern a nanoarray structure consisting of 200 nanorods. The epitaxial Ag films with nanoarray structures grown in the study exhibited very flat and smooth surfaces having excellent crystallinity and local misorientation of less than 1°. Further, spectroscopic ellipsometry measurements indicated that the imaginary part of the dielectric constant of the single-crystalline film was smaller than that of a conventional polycrystalline film. Moreover, we used the three-dimensional finite-difference time-domain method to analyze the plasmonic properties of the nanoarray structure by considering the actual processed structure. Characteristically, when the SiO2 substrate was etched by ion beam milling to a depth of 30 nm, the spectrum showed a spectral shape 20% sharper than that of the substrate with no etching (depth: 0 nm). The plasmonic performance of the single-crystalline Ag nanostructure was largely determined by its structural precision and the dielectric properties of the metal.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.7b18367