Photon-Responsive Antibacterial Nanoplatform for Synergistic Photothermal-/Pharmaco-Therapy of Skin Infection

Abuse of antibiotics and their residues in the environment results in the emergence and prevalence of drug-resistant bacteria and leads to serious health problems. Herein, a photon-controlled antibacterial platform that can efficiently kill drug-resistant bacteria and avoid the generation of new bac...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 11; no. 1; pp. 300 - 310
Main Authors Zhang, Lingling, Wang, Yingqian, Wang, Jie, Wang, Yulan, Chen, Aoying, Wang, Can, Mo, Wenting, Li, Yingxue, Yuan, Quan, Zhang, Yufeng
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 09.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abuse of antibiotics and their residues in the environment results in the emergence and prevalence of drug-resistant bacteria and leads to serious health problems. Herein, a photon-controlled antibacterial platform that can efficiently kill drug-resistant bacteria and avoid the generation of new bacterial resistance was designed by encapsulating black phosphorus quantum dots (BPQDs) and pharmaceuticals inside a thermal-sensitive liposome. The antibacterial platform can release pharmaceuticals in a spatial-, temporal-, and dosage-controlled fashion because the BPQDs can delicately generate heat under near-infrared light stimulation to disrupt the liposome. This user-defined delivery of drug can greatly reduce the antibiotic dosage, thus avoiding the indiscriminate use of antibiotics and preventing the generation of superbugs. Moreover, by coupling the photothermal effect with antibiotics, this antibacterial platform achieved a synergistic photothermal-/pharmaco-therapy with significantly improved antibacterial efficiency toward drug-resistant bacteria. The antibacterial platform was further employed to treat antibiotic-resistant bacteria-caused skin abscess and it displayed excellent antibacterial activity in vivo, promising its potential clinical applications. Additionally, the antibacterial mechanism was further investigated. The developed photon-controlled antibacterial platform can open new possibilities for avoiding bacterial resistance and efficiently killing antibiotic-resistant bacteria, making it valuable in fields ranging from antiinfective therapy to precision medicine.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.8b18146