Functionalized Metal–Organic Framework as a Biomimetic Heterogeneous Catalyst for Transfer Hydrogenation of Imines
Mimicking a biocatalytic system has been one of the prevalent strategies for the design of novel and efficient chemical transformations. Among the enzyme-catalyzed reactions, the cooperative interplay of Lewis- and Brønsted-acidic functionalities at active sites represents a common feature in activa...
Saved in:
Published in | ACS applied materials & interfaces Vol. 9; no. 11; pp. 9772 - 9777 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
22.03.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Mimicking a biocatalytic system has been one of the prevalent strategies for the design of novel and efficient chemical transformations. Among the enzyme-catalyzed reactions, the cooperative interplay of Lewis- and Brønsted-acidic functionalities at active sites represents a common feature in activating reactants. Employing MIL-101(Cr) as a biomimetic platform, we customize a sulfonic group (SO3H) into its hierarchical pores to generate a heterogeneous catalyst for transfer hydrogenation of imines by using Hantzsch ester as the reductant. Both aldimines and ketimines were efficiently converted to their hydrogenated counterparts in a manner similar to metal enzymes. The Cr3+ node and sulfonic acid functionality encapsulated in MOF cages worked cooperatively in promoting this transformation, resulting in an enhanced reactivity as compared to its homogeneous analogue. Furthermore, MIL-101(Cr)-SO3H could be recycled for many times without considerable loss in reactivity. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.7b00562 |