Mineral-Enhanced Polyacrylic Acid Hydrogel as an Oyster-Inspired Organic–Inorganic Hybrid Adhesive
Underwater adhesion is crucial to many marine life forms living a sedentary lifestyle. Amongst them, mussel adhesion has been mostly studied, which inspires numerous investigations of 3,4-dihydroxyphenylalanine (DOPA)-based organic adhesives. In contrast, reef-building oysters represent another impo...
Saved in:
Published in | ACS applied materials & interfaces Vol. 10; no. 12; pp. 10471 - 10479 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
28.03.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Underwater adhesion is crucial to many marine life forms living a sedentary lifestyle. Amongst them, mussel adhesion has been mostly studied, which inspires numerous investigations of 3,4-dihydroxyphenylalanine (DOPA)-based organic adhesives. In contrast, reef-building oysters represent another important “inorganic” strategy of marine molluscs for adhesion by generating biomineralized organic–inorganic adhesives, which is still rarely studied and no synthetic analogues have ever been reported so far. Here, a novel type of oyster-inspired organic–inorganic adhesive based on a biomineralized polyelectrolyte hydrogel is reported, which consists of polyacrylic acid physically cross-linked by very small amorphous calcium carbonate nanoparticles (<3 nm). The mineral-enhanced polyelectrolyte hydrogel adhesive is shown to be injectable, reusable, and optically clear upon curing in air. Moreover, comparable adhesion performance to DOPA-based adhesives is found for the hydrogel adhesive in both dry and wet conditions, which can even be further enhanced by introducing a small amount of second large cross-linker such as negatively charged nanoparticles. The present mineral hydrogel represents a new type of bio-inspired organic–inorganic adhesive that may find a variety of potential applications in adhesive chemistry. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.8b01082 |