Highly Transparent Conductive Reduced Graphene Oxide/Silver Nanowires/Silver Grid Electrodes for Low-Voltage Electrochromic Smart Windows

Transparent conductive electrodes (TCEs) based on hybrid structures (silver nanowires) have been compressively reconnoitered in next-generation electronics such as flexible displays, artificial skins, smart windows, and sensors because of their admirable conductivity as well as flexibility, which ma...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 11; no. 2; pp. 1969 - 1978
Main Authors Mallikarjuna, Koduru, Kim, Haekyoung
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 16.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Transparent conductive electrodes (TCEs) based on hybrid structures (silver nanowires) have been compressively reconnoitered in next-generation electronics such as flexible displays, artificial skins, smart windows, and sensors because of their admirable conductivity as well as flexibility, which make them favorable substitutes to replace ITO (indium tin oxide) as a transparent conductor. Nevertheless, silver-based TCEs grieve from poor stability because of the corrosion and oxidation of silver in electrolytes. To overcome these issues, a RGO (reduced graphene oxide) layer on silver was promoted to resolve the difficulties of corrosion and oxidation in the electrolyte. Moreover, we successfully designed and demonstrated low-voltage WO3-based electrochromic devices (ECDs) with fabricated hybrid TCEs. The hybrid electrodes with RGO/silver nanowires/metal grid/PET (RAM) electrode exhibited improvements in the switching stability and optoelectronic properties, such as the sheet resistance (0.714 ohm/sq) as well as optical transparency of 90.9%. The coloration and bleaching behavior of the ECD was observed in an applied low-voltage range of −1.0 to 0.0 V with a maximum optical difference of 72% at 700 nm, which yielded a coloration efficiency (η) of ∼33.4 cm2/C. The highly conductive hybrid TCEs exhibit favorable features for numerous embryonic flexible electronics and optoelectronic devices.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.8b14086