Ni and NiO Nanoparticles Decorated Metal–Organic Framework Nanosheets: Facile Synthesis and High-Performance Nonenzymatic Glucose Detection in Human Serum

Ni-MOF (metal–organic framework)/Ni/NiO/carbon frame nanocomposite was formed by combing Ni and NiO nanoparticles and a C frame with Ni-MOF using an efficient one-step calcination method. The morphology and structure of Ni-MOF/Ni/NiO/C nanocomposite were characterized by transmission electron micros...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 9; no. 27; pp. 22342 - 22349
Main Authors Shu, Yun, Yan, Yan, Chen, Jingyuan, Xu, Qin, Pang, Huan, Hu, Xiaoya
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 12.07.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Ni-MOF (metal–organic framework)/Ni/NiO/carbon frame nanocomposite was formed by combing Ni and NiO nanoparticles and a C frame with Ni-MOF using an efficient one-step calcination method. The morphology and structure of Ni-MOF/Ni/NiO/C nanocomposite were characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and energy disperse spectroscopy (EDS) mapping. Ni-MOF/Ni/NiO/C nanocomposites were immobilized onto glassy carbon electrodes (GCEs) with Nafion film to construct high-performance nonenzymatic glucose and H2O2 electrochemical sensors. Cyclic voltammetric (CV) study showed Ni-MOF/Ni/NiO/C nanocomposite displayed better electrocatalytic activity toward glucose oxidation as compared to Ni-MOF. Amperometric study indicated the glucose sensor displayed high performance, offering a low detection limit (0.8 μM), a high sensitivity of 367.45 mA M–1 cm–2, and a wide linear range (from 4 to 5664 μM). Importantly, good reproducibility, long-time stability, and excellent selectivity were obtained within the as-fabricated glucose sensor. Furthermore, the constructed high-performance sensor was utilized to monitor the glucose levels in human serum, and satisfactory results were obtained. It demonstrated the Ni-MOF/Ni/NiO/C nanocomposite can be used as a good electrochemical sensing material in practical biological applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.7b07501