Cell-Targeting Cationic Gene Delivery System Based on a Modular Design Rationale

En route to target cells, a gene carrier faces multiple extra- and intracellular hurdles that would affect delivery efficacy. Although diverse strategies have been proposed to functionalize gene carriers for individually overcoming these barriers, it is challenging to generate a single multifunction...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 8; no. 22; pp. 14200 - 14210
Main Authors Liu, Jia, Xu, Luming, Jin, Yang, Qi, Chao, Li, Qilin, Zhang, Yunti, Jiang, Xulin, Wang, Guobin, Wang, Zheng, Wang, Lin
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 08.06.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:En route to target cells, a gene carrier faces multiple extra- and intracellular hurdles that would affect delivery efficacy. Although diverse strategies have been proposed to functionalize gene carriers for individually overcoming these barriers, it is challenging to generate a single multifunctional gene carrier capable of surmounting all these barriers. Aiming at this challenge, we have developed a supramolecular modular approach to fabricate a multifunctional cationic gene delivery system. It consists of two prefunctionalized modules: (1) a host module: a polymer (PCD-SS-PDMAEMA) composed of poly­(β-cyclodextrin) backbone and disulfide-linked PDMAEMA arms, expectedly acting to compact DNA and release DNA upon cleavage of disulfide linkers in reductive microenvironment; and (2) a guest module: adamantyl and folate terminated PEG (Ad-PEG-FA), expectedly functioning to reduce nonspecific interactions, improve biocompatibility, and provide folate-mediated cellular targeting specificity. Through the host–guest interaction between β-cyclodextrin units of the “host” module and adamantyl groups of the “guest” module, the PCD-SS-PDMAEMA-1 (host) and Ad-PEG-FA (guest) self-assemble forming a supramolecular pseudocopolymer (PCD-SS-PDMAEMA-1/PEG-FA). Our comprehensive analyses demonstrate that the functions preassigned to the two building modules are well realized. The gene carrier effectively compacts DNA into stable nanosized polyplexes resistant to enzymatic digestion, triggers DNA release in reducing environment, possesses significantly improved hemocompatibility, and specifically targets folate-receptor positive cells. Most importantly, endowed with these predesigned functions, the PCD-SS-PDMAEMA-1/PEG-FA supramolecular gene carrier exhibits excellent transfection efficacy for both pDNA and siRNA. Thus, this work represents a proof-of-concept example showing the efficiency and convenience of an adaptable, modular approach for conferring multiple functions to a single supramolecular gene carrier toward effective in vivo delivery of therapeutic nucleic acids.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.6b04462