In Situ Assembly of Ultrathin PtRh Nanowires to Graphene Nanosheets as Highly Efficient Electrocatalysts for the Oxidation of Ethanol
One-dimensional (1D) anisotropic platinum-based nanowires are promising electrocatalysts in polymer electrolyte membrane fuel cells owing to the inherent structural merits. Herein, we report an in situ growth of ultrathin PtRh nanowires (diameters of 2–3 nm) on graphene nanosheets via the oriented a...
Saved in:
Published in | ACS applied materials & interfaces Vol. 9; no. 4; pp. 3535 - 3543 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
01.02.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | One-dimensional (1D) anisotropic platinum-based nanowires are promising electrocatalysts in polymer electrolyte membrane fuel cells owing to the inherent structural merits. Herein, we report an in situ growth of ultrathin PtRh nanowires (diameters of 2–3 nm) on graphene nanosheets via the oriented attachment pathway. Mechanistic studies reveal that graphene nanosheets play a critical role in the nucleation and growth of PtRh nanowires. The resulting hybrid of PtRh nanowire decorated graphene nanosheets shows outstanding activity and durability toward ethanol electro-oxidation. It exhibits a specific current density of 2.8 mA cm–2 and a mass-normalized current density of 1 A mg–1 metal, which are 5.4 and 3.1 times those of the state-of-the-art Pt/C catalyst, respectively. After 2000 cyclic tests, it maintains 86% of the initial electrochemically active surface area, which is larger than that of 63% obtained from the Pt/C catalyst. The superior performance is attributed to the combination of the advantageous 1D morphological motif with the synergistic effects of PtRh alloys and graphene nanosheet support. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.6b09573 |