Early-Transition-Metal Ketenimine Complexes: Synthesis, Reactivity, and Structure of Ketenimine-Containing Titanocene and Zirconocene Complexes
Reaction of Cp2M(PMe3)2 complexes (M = Ti, Zr; Cp = η5-C5H5) with the N-(p-tolyl)diphenylketenimine Ph‘NCCPh2 (Ph‘ = p-MeC6H4) in a 1:1 molar ratio affords the ketenimine-containing metallocene derivatives Cp2M(η2-(C,N)-Ph‘NCCPh2)(PMe3) (M = Ti (1); Zr (2)). The ketenimine ligand reacts in the s...
Saved in:
Published in | Organometallics Vol. 16; no. 24; pp. 5283 - 5288 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
WASHINGTON
American Chemical Society
25.11.1997
Amer Chemical Soc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Reaction of Cp2M(PMe3)2 complexes (M = Ti, Zr; Cp = η5-C5H5) with the N-(p-tolyl)diphenylketenimine Ph‘NCCPh2 (Ph‘ = p-MeC6H4) in a 1:1 molar ratio affords the ketenimine-containing metallocene derivatives Cp2M(η2-(C,N)-Ph‘NCCPh2)(PMe3) (M = Ti (1); Zr (2)). The ketenimine ligand reacts in the same way with the “Cp*2M” species (Cp* = η5-C5Me5) generated from the reduction of the corresponding Cp*2MCl2 complexes with LitBu (1:2 molar ratio) to give the related complexes Cp*2M(η2-(C,N)-Ph‘NCCPh2) (M = Ti (3); Zr (4)). The molecular structure of 3 shows a titanium atom bonded to two η5-cyclopentadienyl rings and a η2 -(C,N)-bonded ketenimine ligand. Reaction of “Cp*2Ti” with the ketenimine ligand in a 1:2 molar ratio gives 1,1,5,5-tetraphenyl-3-(p-tolyl)-2-(p-toluidino)-3-aza-1,4-pentadiene, which probably results from the coupling, followed by hydrolysis, of two ketenimine molecules coordinated to one titanocene moiety. Protonation of 3 with Et3NHCl or H2O (1:1 molar ratio) affords the intermediate species Cp*2Ti(X)(η2-(C,N)-Ph‘N C(H) CPh2) (X = Cl (5); OH (6)), which on hydrolysis evolves to give the enamine Ph‘N(H)CHCPh2 as the final product. Finally, 3 reacts reversibly with H2 to give the hydride enamidate complex Cp*2Ti(H)(η1-Ph‘NCHCPh2) (7). The structures of the different compounds have been determined by IR and NMR spectroscopic methods. |
---|---|
Bibliography: | istex:36EFB8D69C960991C92A2C56605A8DA9FCE954CA Abstract published in Advance ACS Abstracts, November 1, 1997. ark:/67375/TPS-1Z7P6CP0-6 |
ISSN: | 0276-7333 1520-6041 |
DOI: | 10.1021/om970568p |