Construction of ZnIn2S4–In2O3 Hierarchical Tubular Heterostructures for Efficient CO2 Photoreduction

We demonstrate the rational design and construction of sandwich-like ZnIn2S4–In2O3 hierarchical tubular heterostructures by growing ZnIn2S4 nanosheets on both inner and outer surfaces of In2O3 microtubes as photocatalysts for efficient CO2 photoreduction. The unique design integrates In2O3 and ZnIn2...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 140; no. 15; pp. 5037 - 5040
Main Authors Wang, Sibo, Guan, Bu Yuan, Lou, Xiong Wen David
Format Journal Article
LanguageEnglish
Published American Chemical Society 18.04.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We demonstrate the rational design and construction of sandwich-like ZnIn2S4–In2O3 hierarchical tubular heterostructures by growing ZnIn2S4 nanosheets on both inner and outer surfaces of In2O3 microtubes as photocatalysts for efficient CO2 photoreduction. The unique design integrates In2O3 and ZnIn2S4 into hierarchical one-dimensional (1D) open architectures with double-heterojunction shells and ultrathin two-dimensional (2D) nanosheet subunits. This design accelerates the separation and transfer of photogenerated charges, offers large surface area for CO2 adsorption, and exposes abundant active sites for surface catalysis. Benefiting from the structural and compositional merits, the optimized ZnIn2S4–In2O3 photocatalyst exhibits outstanding performance for reductive CO2 deoxygenation with considerable CO generation rate (3075 μmol h–1 g–1) and high stability.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0002-7863
1520-5126
1520-5126
DOI:10.1021/jacs.8b02200